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Triangulations and the Euler characteristic

Let S be a compact connected surface. In this note, we shall consider S as a topological
surface, meaning a Hausdorff topological space such that each point p in S has an open
neighbourhood U = U, homeomorphic to an open disc in R?.

There is an important topological invariant called the Euler characteristic. In order to de-
fine it, we shall need a concept of triangulation. Here is an outline, assuming some statements
without proofs.

Informally, a triangulation 7 is cutting a surface S into a finite number of ‘polygonal’
regions, called faces, by smooth non-self-intersecting arcs, called edges, joined at vertices (so
that a triangulated surface looks like a ‘topological polyhedron’). More precisely, an edge of
7 is a homeomorphic image in S of the interval [0,1] C R and the images of 0 and 1 are
vertices of T. The complement of the edges of 7 in S consists of (finitely many) connected
components; each one is required to be homeomorphic to an open disc. The faces of T are
the closures of these components. In addition, one requires the following properties:

- any two faces share only one edge, if at all; each edge belongs to the boundaries of
exactly two faces;

- two edges meet only in one common end-point (vertex), if at all;

- any vertex has a neighbourhood homeomorphic to an open disc with edges corresponding
to rays from the centre to the boundary of that disc. Any two distinct sectors cut out
by these rays correspond to distinct faces of 7. (Consequently, at least 3 edges meet at
each vertex.)

Remark. In the literature, there are some variations on what is allowed or disallowed in a
triangulation. However, these variations will not be important for us as they lead to the same
FEuler characteristic.

Let V(T),E(T), F(T) denote the number of vertices, edges, and faces of 7. A remarkable
fact is that the quantity
x(85,T) =V(T) = E(T) + F(T)

is independent of the choice of a triangulation of S. Therefore it can be written as x(.5)
and is called the Euler characteristic of S. Euler characteristic also appears in the Algebraic
Topology course and the Riemann Surfaces course.

We shall assume without proof the following topological result.

Theorem. Fvery compact surface S in R™ has a triangulation.

What really matters here is whether a surface S is a so-called ‘second countable’ topolog-
ical space. By definition, second countable means that there is a countable family of open
neighbourhoods U,, C S, n =1,2,..., so that every open subset of S can be obtained as a
union of some U,’s.

The Euclidean space R™, for each n, is second countable as one can choose the family
of all the open balls with rational radii and with centres whose coordinates are rational
numbers. Surfaces in R™, with the subset topology, are thus second countable.



Compact connected orientable surfaces (without boundary) are classified up to a homeo-
morphism by their Euler characteristic x (or, equivalently, by the genus). The genus g(S) is
related to x(S) by x(S) = 2 — 2¢(S) and ¢(S) can be visualized as ‘the number of handles
that one needs to attach to the sphere in order to obtain S’. Thus g(S) > 0 and x(S5) < 2.

For example, x(S?) = 2 and ¢(5?) = 0; we can use a triangulation with V = F = 4 and
FE = 6 induced by putting a regular tetrahedron inside the sphere and projecting from a point
inside the tetrahedron. The torus has x = 0 and g = 1, another example is shown in Figure 1.

You may notice from the above that x(S) is even for each compact orientable surface S.
An example of topological surface with an odd x is the quotient S?/ =+ 1 by the antipodal
map (if the antipodal map preserves the triangulation 7 of S? then the quotient has a
triangulation with exactly half of everything 7 has, hence x = 1). This is the projective
plane RP2. Tt is not orientable and can be realized as a manifold in R” for n > 4, but not
in R3 (there is an immersion of RP? in R? with self-intersection known as a ‘cross-cap’).

The notion of triangulation extends to compact surfaces S with boundary. Then 9SS is
necessarily a disjoint union of circles S' and we require that each S* is a union of edges (it
follows from the previous conditions that each S will contain at least 2 vertices). E.g. a
closed disc has xy =1 (a sphere minus one face).

A triangulation can be refined, if necessary, by performing sufficiently many times a
barycentric subdivision: mark a point, a new vertex, in the interior of a face and further
new vertices in the middle of each edge of this face. Join the new vertex in the interior by
new edges with those in the middle of the edges and also with all the ‘old’ vertices on the
boundary of this face.

In this way, one can achieve triangulations with very small faces and with each face
diffeomorphic to Euclidean triangle. Furthermore, the edges may be chosen to be arcs of
geodesics.

Fig. 1. Triangulating a ‘topological pretzel: x =24 —44 + 18 = -2, g = 2.



