ANALYSIS I EXAMPLES 2

G.P. Paternain Lent 2021

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk.

1. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x$ if $x \in \mathbb{Q}$ and $f(x)=1-x$ otherwise. Find $\{a: f$ is continuous at $a\}$.
2. Write down the definition of " $f(x) \rightarrow \infty$ as $x \rightarrow \infty$ ". Prove that $f(x) \rightarrow \infty$ as $x \rightarrow \infty$ if, and only if, $f\left(x_{n}\right) \rightarrow \infty$ for every sequence such that $x_{n} \rightarrow \infty$.
3. Suppose that $f(x) \rightarrow \ell$ as $x \rightarrow a$ and $g(y) \rightarrow k$ as $y \rightarrow \ell$. Must it be true that $g(f(x)) \rightarrow k$ as $x \rightarrow a$?
4. Let $f_{n}:[0,1] \rightarrow[0,1]$ be continuous, $n \in \mathbb{N}$. Let $h_{n}(x)=\max \left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$. Show that h_{n} is continuous on $[0,1]$ for each $n \in \mathbb{N}$. Must $h(x)=\sup \left\{f_{n}(x): n \in \mathbb{N}\right\}$ be continuous?
5. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function. Prove that there exists $c \in[0,1]$ such that $f(c)=c$. Such a c is called a fixed point of f. Give an example of a bijection of $[0,1]$ with no fixed point. If $h:(0,1) \rightarrow(0,1)$ is a continuous bijection, must it have a fixed point?
6. Let $f(x)=\sin ^{2} x+\sin ^{2}\left(x+\cos ^{7} x\right)$. Assuming the familiar features of sin without justification, prove that there exists $k>0$ such that $f(x) \geq k$ for all $x \in \mathbb{R}$.
7. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is continuous, that $f(0)=f(1)=0$, and that for every $x \in(0,1)$ there exists $0<\delta<\min \{x, 1-x\}$ with $f(x)=(f(x-\delta)+f(x+\delta)) / 2$. Show that $f(x)=0$ for all x.
8. Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded. Suppose that $f((x+y) / 2) \leq(f(x)+f(y)) / 2$ for all $x, y \in[a, b]$. Prove that f is continuous on (a, b). Must it be continuous at a and b too?
9. Prove that $2 x^{5}+3 x^{4}+2 x+16=0$ has no real solutions outside $[-2,-1]$ and exactly one inside.
10. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b). Which of (1)-(4) must be true?
(1) If f is increasing then $f^{\prime}(x) \geq 0$ for all $x \in(a, b)$.
(2) If $f^{\prime}(x) \geq 0$ for all $x \in(a, b)$ then f is increasing.
(3) If f is strictly increasing then $f^{\prime}(x)>0$ for all $x \in(a, b)$.
(4) If $f^{\prime}(x)>0$ for all $x \in(a, b)$ then f is strictly increasing.
[Increasing means $f(x) \leq f(y)$ if $x<y$, and strictly increasing means $f(x)<f(y)$ if $x<y$.]
11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable for all x. Prove that if $f^{\prime}(x) \rightarrow \ell$ as $x \rightarrow \infty$ then $f(x) / x \rightarrow \ell$. If $f(x) / x \rightarrow \ell$ as $x \rightarrow \infty$, must $f^{\prime}(x)$ tend to a limit?
12. Let $f(x)=x+2 x^{2} \sin (1 / x)$ for $x \neq 0$ and $f(0)=0$. Show that f is differentiable everywhere and that $f^{\prime}(0)=1$, but that there is no interval around 0 on which f is increasing.
13. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function which has the intermediate value property: If $f(a)<c<f(b)$, then $f(x)=c$ for some x between a and b. Suppose also that for every rational r, the set S_{r} of all x with $f(x)=r$ is closed, that is, if x_{n} is any sequence in S_{r} with $x_{n} \rightarrow a$, then $a \in S_{r}$. Prove that f is continuous.
