DYNAMICAL SYSTEMS. EXAMPLES 1.

G.P. Paternain Michaelmas 2004

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk. Most of the examples in this sheet are taken from the text that I am following in lectures: *Introduction to dynamical systems*, by M. Brin & G. Stuck.

- 1. Show that the complement of a forward invariant set is backward invariant and viceversa. Show that if f is bijective, then an invariant set A satisfies $f^t(A) = A$ for all t. Show that this is false, in general, if f is not bijective.
- **2.** Suppose (X, f) is a factor of (Y, g) by a semiconjugacy $\pi : Y \to X$. Show that if $y \in Y$ is periodic point, then $\pi(y) \in X$ is periodic. Give an example to show that the preimage of a periodic point does not necessarily contain a periodic point.
- 3. Let G be a topological group. Prove that if G has a minimal left translation, then G is abelian.
- 4. (a) Show that for any $k \in \mathbb{Z}$, there is a continuous semiconjugacy from R_{α} to $R_{k\alpha}$.
 - (b) Show that R_{α} and R_{β} are conjugate by a homeomorphism if and only if $\alpha = \pm \beta \mod 1$.
- **5**. Let A be an $m \times m$ matrix with zeros and ones. Prove that:
 - (a) the number of fixed points of the shift in Σ_A (or Σ_A^+) is the trace of A;
- (b) the number of allowed words of length n+1 beginning with the symbol i and ending with j is the i, j-th entry of A^n ; and
 - (c) the number of periodic points of the shift of period n in Σ_A (or Σ_A^+) is the trace of A^n .
- **6**. Assume that all entries of some power of A are positive. Show that for the shift on Σ_A and Σ_A^+ , periodic points are dense, and there are dense orbits.
- 7. Let X be a locally compact metric space and $f: X \to X$ a continuous map. Suppose p is an attracting fixed point for f. Show that there is a neighbourhood U of p such that the forward orbit of every point in U converges to p.
- **8**. Let $f : \mathbb{R} \to \mathbb{R}$ be a C^1 map, and p be a fixed point. Show that if |f'(p)| < 1, then p is attracting, and if |f'(p)| > 1, then p is repelling.

Consider the quadratic family q_{μ} . Are 0 and $1-1/\mu$ attracting or repelling for $\mu=1$? and for $\mu=3$?

9. Show that the eigenvalues of a two-dimensional hyperbolic toral automorphism are irrational. Prove that the stable and unstable manifolds are dense.

Show that the number of periodic points of period n of a hyperbolic toral automorphism A is $\det(A^n - I)$.

- 10. Compute the Lyapunov exponents for the expanding map E_m and the solenoid.
- 11. The Haar measure of a compact metrisable topological group G is the unique probability measure μ defined on the Borel σ -algebra \mathcal{B} of G such that $\mu(xE) = \mu(E)$ for all $x \in G$ and all $E \in \mathcal{B}$. Show that every non-empty open subset of G has non-zero Haar measure. Show that a continuous surjective endomorphism of G preserves Haar measure.
- 12. Prove that there exists a point in $x \in \mathbb{R}/\mathbb{Z}$ such that its ω -limit set with respect to the expanding map E_3 is the standard middle-third Cantor set K. In particular K is E_3 -invariant and contains a dense orbit.

13. Show that the periodic points of any hyperbolic toral endomorphism F of \mathbb{T}^n are dense. (Hint: consider a number p relatively prime to det F and look at F restricted to $p^{-1}\mathbb{Z}^n/\mathbb{Z}^n$.)