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The duality principle in projective geometry seems to have been stated for
the first time in full generality by J.D. Gergonne. In 1826 he published in
the 16th volume of his Annales, which was entitled Mathematical Philosophy,
an essay “Philosophical considerations on the elements of the science of the
extended.” (In the list of contents at the end of the volume it is made clearer as
“Philosophical Considerations on the properties of the extended which do not
depend on metric relations”.) In it Gergonne first explains the concept of the
metric property and of the property of position and then continues as follows:

Mais un caractère extrêmement frappant de cette partie de la a géometrie
qui ne dépend aucunement des relations métriques entre les parties des figures;
c’est qu’à l’exception de quelques théorèmes symétriques d’eux-mêmes, tels, par
exemple, que le théorème d’Euler sur les polyèdres, et son analogue sur les
polygones, tous les théorèmes y sont doubles; c’est à dire que, dans la géometrie
plane, à chaque théorème il en répond nécessairement un autre qui s’en déduit
en y échangeant simplement entre eux les deux mots points et droites; tandis
que, dans la géométrie de l’éspace, ce sont des mots points et plans qu’il faut
échanger entre eux pour passer d’un théorème à son corrélatif.

Parmi un grand nombre d’exemples que nous pourrions puiser, dans le présnt
recueil, de cette sorte de dualité des théorèmes qui constituent la géométrie de
situation, nous nous bornerons à indiquer, comme les plus remarquables, les
deux élégans théorèmes de M. Coriolis, dḿontrés d’abord à la page 326 du XI.e
volume, puis à la page 69 du XII.e, et l’article que nous avons nous-même publié
à la page 157 du présent volume, sur les lois générales qui régissent les polyèdres.
(p 210)

“But an extremely striking character of that part of geometry which does
not in any way depend on the metric relations between the parts of the figures is

∗The editor is grateful to Dr. Thomas Forster whose lucid translation and diagrams have
made Specker’s important article more accessible
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that—with the exception of some theorems which by themselves are symmetric,
such as, for example, Euler’s theorem on the polyhedra, and its analogue con-
cerning polygons—all the theorems there are double; that is to say that in plane
geometry there necessarily always corresponds to each theorem another which is
derived from it simply by exchanging the two words points and lines; whilst in
geometry of space it is the words points and planes which we have to exchange
one for the other in order to pass from one proposition to its correlative.

Among the great number of examples from which we could choose, in the
present collection, of this sort of duality of the thorems which form the ge-
ometry of situation, we shall restrict ourselves to pointing out—as the most
remarkable—the two elegant theorems of M. Coriolis first proved on page 326 of
volume XI, then on page 69 of volume XII, and the article which we ourselves
published on page 157 of the present volume, on the general laws which govern
polyhedra” (p. 210).

In what follows, Gergonne exhibits a number of pairs of dual theorems; he
puts them—in a manner which has often been imitated—on one page in two
columns. In so doing he does not conceive of space consistently as projective;
the exceptions that the duality principle then suffers are concealed by artful
formulations. For example, his first pair is as follows (p. 212):

Two points, distinct from one another, Two non parallel planes, given in
given in space, determine space, determine an indefinite
an indefinite straight line, which straight line which, when these
when these two points are called two planes are called A and B,
A and B, can itself be called AB. can itself be called AB.

Here the two concepts two distinct points and two non parallel planes are
presented as dual concepts of which nothing was explicitly said above and which
cannot be consistently followed through. It is assumed that a plane and a
straight line will always have a point in common, and this is true in general
only in projective space. (pp 212-213)

A plane in space may be determined A point in space may be determined
by a line and a point not on that by a plane and a line not lying
line, or again by two lines which within it, or again by two lines
meet at a point. lying within one plane.

Nowhere does Gergonne attempt to base the duality principle on anything.
He seems to be of the view that it should be an axiom of a theory of space
and as such not in need of any justification. Specifically he nowhere refers to
the theory of the incidence-respecting polar correspondence between points and
lines developed by Poncelet.

Poncelet was irritated by this omission of Gergonne’s, and subsequent vol-
umes of Annales de Mathématiques contain a dispute between the two of them.
The first essay appears under “Mathematical Philosophy,” but later essays ap-
pear under “Mathematical Polemics.” The quarrel was occasioned not so much
by a dispute over priority as by a difference of views. The differences are admit-
tedly not clearly spelled out, but this would in any case not have been possible
without projective geometry being given a clearer form.
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It was only much later—with the help of the axiomatic approach—that this
clarification could be achieved. Accordingly, we shall now turn to the setting up
of an axiom system for plane projective geometry. We begin by noting that all
relations between points and straight lines can be expressed in terms of incidence
and identity: the point p lies on the line g, the line g goes through the point p;
p coincides with g (written (p I g)). The lines g and h intersect in p : g I p and
h I p. The points p, q, r do not lie on a line: there is no line g with g I p and g I q
and g I r. Thus the axiom system contains the primitive concepts point, line
and incidence—a two place relation. The logic on which it is based is first-order
predicate logic with equality. Axiom A0 collects the properties that we have
tacitly assumed.

A0 Every element is a point or a line but not both. Incidence is a symmetrical
relation and holds between a point and a line.

A1 Any two points are incident on precisely one line.

A1
′ Any two lines meet at precisely one point.

A2 There are four points no three of which lie on any one line.

A2
′ There are four lines no three of which meet at any one point.

Note that the concepts point and line in Ao occur symmetrically: A is self-
dual. The axioms A1 and A1

′ are dual: It is easy to describe structures satisfying
A0, A1 and A1

′, but not the whole system of axioms A0, A1, A1
′A2 and A2

′ of
plane projective geometry. The simplest projective plane contains 7 points and
7 lines, between which, given appropriate numbering, the following incidences
hold. The points p2, p3, and p4 lie on g1; p1, p3, and p5 lie on g2; p1, p2, and p6
lie on g3; p1, p4, and p7 lie on g4; p2, p5, and p7 lie on g5; p3, p6 and p7 lie on
g6; p4, p5, and p6 lie on g7 (Figure 1).

From this description it follows that the lines g2, g3, and g4 meet at p1; it
can easily be verified that all the axioms are true in this structure.

It is easy to check that in this projective plane, with the points and lines
numbered as above, if the point pi lies on the line gk then the line gi lies on the
point pk. So the bijection π defined by by swapping gi to pi has the following
properties. It maps the set of points and lines one-one onto itself; it preserves
incidence—a lies on b iff π(a) lies on π(b); the image of a point is a line and the
image of a line is a point; π2 is the identity, that is, π(π(a)) = a for all a. Let
us call a map with these characteristics a polarity.

It follows immediately from the existence of a polarity that the principle of
duality holds in the projective plane under consideration in full generality: for
any expression S of the language of point, line, incidence, etc., if S holds in this
structure, so does S′, the sentence obtained from S by exchanging ‘point’ and
‘line’. All we need in order to prove this is the fact that isomorphic structures
satisfy the same sentences. If given a plane E we define a plane E′ whose points
are the lines of E and whose lines are the points of E then the planes E amd
E′ are isomorphic, and the isomorphism is given by π. Given our definition of
E′, a formula S holds in E′ precisely when S′ holds in E. Since S holds in E′

precisely when S holds in E, S′ holds in E precisely when S holds in E. The
axiom system is dual: that is to say, if A is an axiom, so is A′.
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Figure 1: The seven-point projective plane

There is a temptation (and people have probably succumbed to it) to infer
from this the duality principle in the form: Given a formula S true in a plane
E, the dual formula S′ is also true in E. However, all that this duality of the
axioms gives us is that if S can be deduced from the axioms, so can S′. A
formula S can be true in a model without being deducible from the axioms.
One such formula is the following: On every line lie exactly three points. This
holds in the seven-point plane we have just seen, but it cannot be proved from
the axioms since as is well-known there are projective planes whose lines have
infinitely many points. The above construction does at least show that if E is
a plane in which S holds, there is a plane E′ in which S′ holds.

We can give a proof that a plane satisfying a formula S satisfies the dual S′ as
well, even if we are merely given a correlation. A correlation is a map exchang-
ing points for lines and preserving incidence. The preceding proof nowhere uses
the fact that the square of the map is the identity. Chasles (1839) had already
emphasised this in [1, p. 226]. On the other hand, the general duality principle
does not hold in a projective plane without extra conditions. This is shown, for
example, by the existence of finite projective planes that admit no correlation
(Pickert 1955, p 108). A finite structure is determined up to isomorphism by
the sentences it satisfies. If E always satisfies S whenever it satisfies S′, then
E is isomorphic to its dual plane E′ (the points of which are the lines of E
and the lines of which are the points of E). An isomorphism of E onto E′ is
nothing more or less than a correlation for E. However, this example of a finite
projective geometry with a correlation but no polarity is rather cumbersome,
and we shall weaken the A axioms given earlier to those that follow, the better
to bring out the fundamental features of interest.
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B0 Every element is a point or a line but not both. Incidence is a symmetrical
relation and holds between a point and a line.

B1 Any two points are incident on at most one line.

B1
′ Any two lines meet at at most one point.

This system of axioms is dual: Exchanging the concepts point and line
changes B0 into itself, and swaps B1 and B′1. A model of this system of axioms
is a configuration; polarity and correlation are to be defined as for projective
planes. It is now a simple matter to give an example of a finite configuration
that admits no correlation. If K is the configuration consisting of a line with
two incident points, then there is clearly no one-one function that exchanges
the points and lines of K. K satisfies “there are exactly two points”, but not
the dual (“there are precisely two lines”). Thus the duality principle fails in
K. On the other hand there are of course configurations for which the duality
principle does hold. If we add to the axioms B0, B1 and B1 a further axiom B2:
“There are exactly three elements”, the resulting system is still dual; but it has
no dual model, for if S is the assertion “There are precisely zero or precisely
two points”, then in each model of the extended system the dual S′ (“There are
precisely zero or two lines”) holds iff S does not.

It is slightly less straightforward to exhibit a configuration that admits a
correlation but no polarity. Figure 2 shows one.

We can define a correlation as follows. First on the points: For all i and j,
pi 7→ gi, q

i
j 7→ hij , and qj 7→ hj . Then on the lines: For all i and j, gi 7→ pi+3,

hij 7→ qij+3 and hj 7→ qj+3, with all addition mod 6.
The theory of K (the set of formulæ true in the configuration K of Figure 2)

is dual and complete (every formula is provable or refutable), but it has no model
with a polarity, for all its models are isomorphic to K and K has no polarity.
In fact, this theory can even be axiomatized with a single axiom. The question
of whether or not a dual complete system of axioms always has a model with a
correlation remains open.1 On the other hand, it is easy to show that a model
of a complete dual system of axioms does not necessarily have a correlation.
For this we consider the configuration that consists of a countable infinity of
points and a countable infinity of lines with an empty incidence relation. The
theory of this configuration is self-dual. Also, it is the same as the theory of the
configuration with a countable infinity of points and continuum many lines with
an empty incidence relation. Clearly there is no one-one structure-preserving
map transposing points and lines in this second model. (It is not difficult to
exhibit a countable configuration that satisfies the dual of every formula that it
satisfies, but that allows of no correlation though of course no such configuration
can be finite.)

H. Kneser (1935) discusses some of these questions in the case of projective
geometry; yet many still seem not to be answered. (For example: does every
finite plane with a correlation also have a polarity? Does every plane that
satisfies the dual of everything it satisfies have a correlation?)

1The author added a note at the end of the original article to the effect that a theory T with
an automorphism σ such that T ` ψ ←→ σ(ψ) for all ψ has a model with a corresponding
automorphism. Specifically Quine’s NF is consistent iff Type Theory remains consistent if
extended by taking as axioms all expressions of the form φ←→ φ∗. Kneser’s questions about
projective planes appear still to be open. (Translator’s note)
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Figure 2: A configuration with a correlation but no polarity

Our example of a dual axiom system without a dual model has the feature
that it contains a formula S that is equivalent to the negation of its dual S′.
Clearly, no system proving a theorem of the form S ←→ ¬S′ can have a dual
model. What we wish to show is the converse of this: namely, that a dual
system of axioms that proves no theorem of the form S ←→ ¬S′ has a dual
model. Suppose we are given such a system. We extend it by taking as new
axioms all formulæ of the form S ←→ S′. If this extended system is consistent,
then by the completeness theorem it has a model, and this model is obviously
dual.

If on the other hand the extended system is inconsistent, then by compact-
ness there are finitely many formulæ S1 . . . Sn such that the conjunction of all
the biconditionals Si ←→ Si

′ with 1 ≤ i ≤ n is refutable. We will show that in
these circumstances there is a single formula S such that S ←→ S′ is refutable.
To do this, it will be sufficient to show that the conjunction of two bicondition-
als of the form S ←→ S′ is equivalent to another such biconditional; induction
will do the rest. We claim that (S1 ←→ S1

′) ∧ (S2 ←→ S2
′) is equivalent to
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T ←→ T ′ where T is In the
published
version there
is a typo in
the second
disjunct

(S1 ←→ S1
′ ∧ S2 ∧ ¬S2

′) ∨ (S2 ←→ S2
′ ∧ ¬S1 ∧ S1

′) ∨ (¬S1 ∧ S1
′ ∧ S2 ∧ ¬S2

′)

T ′ arises from T by swapping the indices 1 and 2. The proof procedes easily
as follows: If S1 ←→ S1

′ and S2 ←→ S2
′ then T and T ′ are both false; if T

and T ′ are both false, then S1 ←→ S1
′ and S2 ←→ S2

′. Notice that T and T ′

cannot be simultaneously true. Chad Brown
says that
this doesn’t
work, and
that T
should be
(¬S′1 ∧ S2) ∨
(S′1 ∧ ¬S′2).

For this proof (and also for the earlier general considerations), it is not essen-
tial for the duality of the theory to arise from the transposition of two primitive
predicates. All that is needed is a permutation of the language that commutes
with the logical operations and is of order two. In this sense group theory and
the theory of skew fields are dual (a·b = c is to be replaced by b·a = c). Then the
concepts of antiautomorphism of order two and antiautomorphism correspond
to the concepts of polarity and correlation. We get a further generalization if
we drop the requirement that the permutation be of order two. Thus we assume
only a permutation of the language commuting with the logical operations. The
most interesting example of such a theory is probably simple type theory with
negative types (see Wang 1952.) We describe this theory briefly. For each type k
there is a suite of variables xki ; primitive predicates are xki = xkj and xki ∈ x

k+1
j .

The axioms are extensionality axioms

(∀xk+1
1 )(∀xk+1

2 )[(∀xk1)(xk1 ∈ xk+1
1 ←→ xk1 ∈ xk+1

2 )→ xk+1
1 = xk+1

2 ]

and axiom schemes of comprehension:

(∃xk+1
1 )(∀xk1)[xk1 ∈ xk+1

1 ←→ B(xk1)]

where B is an expression formed in an admissible way from the primitive
predicates.2

The map that sends each formula φ to the result of raising all superscripts
on all variables in φ by 1 is an automorphism of the language sending axioms
to axioms.

A model of the system of axioms consists of a family of sets 〈Tk : k ∈ Z〉, of
types and of an ∈-relation which holds between elements of Tk and elements of
Tk+1. Tk is to be the domain over which range the variables with superscript
‘k’.

In this context we have—corresponding to the question about dual models
and models with correlations—a question about models that satisfy S∗ whenever
they satisfy S (where S∗ is the result of lifting all type superscripts by one) and
models which have the obvious kind of ∈-automorphism which (for each k) sends
Tk onto Tk+1. Clearly a model with the second characteristic has also the first.

To find a model satisfying S∗ whenever it satisfies S it is necessary and
sufficient that for no S is the conjunction of the biconditionals Sk ←→ Sk+1

refutable, where S0 is S and Sk+1 is (Sk)∗.
As in the case of dual systems of axioms it is sufficient to show the following:

2The author presumably means this axiom scheme to be the scheme of universal closures
of formulæ of this kind, with parameters allowed in B. [translator’s note]
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Given formulæ S1 . . . Sn such that ` ¬
∧

1≤i≤m

(Si ←→ S1
∗) there will

be a formula T and a natural number n such that

` ¬
∧

0<k<n

(T k ←→ T k+1).

Proof: consider ordered m-tuples of truth values ordered lexicographically. Let
V (A1, . . . Am;B1, . . . , Bm) be that boolean combination of A1, . . . B1, . . . , Bm,
which says that the truth value of the m-tuple of As lexicographically precedes
that of the Bs.3

Now let T be the formula V (S1, . . . Sm;Si
∗, . . . Sm

∗).

Since we can refute
∧

1≤i≤m

(Si ←→ Si
∗) it follows that for each k the two

m-tuples of truth values taken by S1
k . . . Sn

k and S1
k+1 . . . Sn

k+1 must be dif-
ferent. For the moment let n be an arbitrary natural number and suppose per
impossibile that all the biconditionals T k ←→ T k+1 with k < n held. Now ei-
ther the T s are all true, in which case the n m-tuples form a strictly increasing
sequence of elements of 2m; or they are all false, in which case the n m-tuples
form a strictly decreasing sequence of elements of 2m. But there cannot be ar-
bitrarily long strictly increasing or decreasing sequences from 2m, and in fact if
we take n to be 2m we obtain a contradiction. We conclude that our assumption
of constancy of the truth-value of the T s was mistaken.

In contrast it is not the case that if T is a type theory such that, for all S,
T ∪ {S ←→ S∗} is consistent then the union of all such extensions of T is also
consistent.

To prove this we consider the following type theory: The sole relation is the
identity; the axioms are the two following schemes, one instance of each for each
k:

1. There are precisely 1, 2, or 3 elements of each type;

2. There are not equally many elements of type k and of type k + 1.

This axiom system obviously has no model satisfying the scheme of bicon-
ditionals S ←→ S∗. However, for any one formula S there is a model in which
S ←→ S∗ holds. A formula S of the kind under consideration deals only with
finitely many types—for example, the types T0, ..., Tn−1—and expresses certain
conditions on the number of elements in these types. So each formula S corre-
sponds to a partition of {1, 2, 3}n into two pieces.

The assertion is proven if we can show that for each such partition there
is a sequence 〈a0, . . . , an〉 such that for all i < n − 1, ai 6= ai+1, and that
〈a0, . . . , an−1〉 and 〈a1, . . . , an〉 belong to the same piece. Once that is done we
can exhibit a model of the theory satisfying S ←→ S∗ as follows. For 0 ≤ i ≤ n
the number of elements of type i is to be ai; for i < 0 it is to be a0 + i (mod 3)
and for i > n it is to be an + i (mod 3). The existence of a sequence 〈a0, . . . , an〉
with the desired property can be demonstrated as follows. For i = 1, 2, 3 let fi

3Translator’s note: thus, for example, V (a, b) is ¬a ∧ b; V (a1, a2; b1, b2) is (¬a1 ∧ b1) ∨
((a1 ←→ b1)∧ (¬a2 ∧ b2)); V (a1, a2, a3; b1, b2, b3)) is (¬a1 ∧ b1)∨ ((a1 ←→ b1)∧ (¬a2 ∧ b2))∨
((a1 ←→ b1) ∧ (a2 ←→ b2)) ∧ (¬a3 ∧ b3)).
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be the (n+ 1)-tuple whose kth element is i+ k (mod 3), and let gi be n-tuples
defined similarly.

If f1 does not have the desired property, then g1 and g2 belong to different
pieces; if f2 does not have the desired property then g2 and g3 lie in different
pieces; but then g1 and g3 lie in the same piece and f3 is a sequence of the
desired kind.

It remains an open question whether or not simple type theory has a model
satisfying the scheme S ←→ S∗. If, on the other hand, the Axiom of Choice is
added to the type theory (perhaps in Russell’s multiplicative form), then by the
method of Specker (1953) a number less than 3 can be assigned to each type
and it can be proved that the numbers assigned to successive types are different.
If then S is the assertion “The number assigned to type 0 is smaller than the
number assigned to type 1” then the conjunction S ←→ S∗ ∧ S∗ ←→ S∗∗ is
refutable.

We now turn to the question of whether the simple type theory has a model
with an ∈-automorphism, which maps type k one-to-one onto the type k + 1.

Corresponding to the question about dual models and models with correla-
tions is a question about the relation between type theories satisfying S ←→ S∗

and the existence of models with corresponding automorphisms.
We show that such a model exists iff Quine’s “New Foundations” system

(1937) is consistent.4 In contrast to simple type theory, NF is a one sorted
system of set theory. It contains an axiom of extensionality:

(∀x)(∀y)(x = y ←→ (∀z)(z ∈ x←→ z ∈ y))

and an axiom scheme of comprehension

(∀~x)(∃y)(∀z)(z ∈ y ←→ Φ(z, ~x))

where ‘z’ is not free in Φ and Φ is stratified. That is to say, Φ can be turned
into a formula of the language of type theory by decorating all its variables with
superscripts.

If NF is consistent, then it has a model M. We define a model N of simple
type theory as follows: Tk is to be M ×{k}, and we set N |= 〈x, n〉 ∈ 〈y, n+ 1〉
iffM |= x ∈ y. It is easy to confirm that T is a model of the simple type theory,
and that the map sending 〈x, n〉 7→ 〈x, n+ 1〉 is an ∈-automorphism sending
each type k one-one onto type k + 1.

Conversely if there is a model N of simple type theory with such an auto-
morphism, π, say, then a model M of NF can be defined as follows: let the
domain ofM be T0, and setM |= x η y iff N |= x ∈ π(y). (η is to be the mem-
bership relation of the model of NF). Now to check the validity of the axiom of
existensionality and of the axiom scheme of comprehension.

Extensionality

(∀x01x02)[(∀x03)(x03 η x
0
1 ←→ x03 η x

0
2)→ x01 = x02]

holds in the new model iff

(∀x01x02)[(∀x03)(x03 ∈ f(x01)←→ x03 ∈ f(x02))→ x01 = x02]

4See addendum to the abstract.
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Because f is a bijection we can rewrite ‘x01 = x02’ as ‘f(x01) = f(x02)’ and
because f is onto, this becomes

(∀x01x02)[(∀x03)(x03 ∈ x11 ←→ x03 ∈ x12)→ x01 = x02]

which is an extensionality axiom of simple type theory.
As an example of a comprehension axiom let us consider the following:

(∃x01)(∀x02)[x02 η x
0
1 ←→ (∃x03)(x03 η x

0
2)]

Rewriting using the definition of η this becomes

(∃x01)(∀x02)[x02 ∈ f(x01)←→ (∃x03)(x03 ∈ f(x02))]

Now we can replace “x02 ∈ f(x01)” by “f(x02) ∈ f(f(x01))” and the resulting
formula is equivalent to

(∃x21)(∀x12)[x12 ∈ x21 ←→ (∃x03)(x03 ∈ x12)]

which is a comprehension axiom of simple type theory.
Projective geometry can now be founded anew in a way corresponding to

the derivation of NF from the theory of types. The one-sorted theory with a
single primitive two place predicate I has the following axioms.

C0 I is symmetrical.

C1 For two distinct elements a and b there is a unique c such that I(a, c) and
I(b, c).

C2 There are four elements a1, a2, a3, a4, of which no three are in the relation
I with any element b.

There is a one-one correspondence between models of this new geometry and
projective planes with a polarity.
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Abstract

The axiom system of plane projective geometry is dual in the sense that it is
transformed into itself by exchange of the notions “point” and “line”. It follows
that for every theorem the dual sentence is also a theorem. However, from the
duality of the axiom system one cannot conclude that in a model the truth of
a sentence implies that of the dual sentence; even less can one conclude that
each model admits a one-one transformation interchanging points and lines and
preserving the incidence relation. For projective geometry, models of this kind
are well known. For the simple theory of types (where duality is replaced by
ambiguity of types) it is shown that the existence of such models is equivalent
to the consistency of “New Foundations”.

Additional remark. The following theorem answers both of the questions
proposed in the paper: if it is complete, then a theory with an automorphism
has a model with a corresponding automorphism. NF is therefore consistent if
simple theory of type [sic] with the additional axioms S ←→ S∗ (in the notation
of the paper) is consistent.
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