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ABSTRACT

A version of the Erdös-Rado theorem on partitions of the unordered n-
tuples from uncountable sets is proved, without using the axiom of choice.
The case with exponent 1 is just the Sierpinski-Hartogs’ result that ℵ(α) ≤
222α

.

The liberal use made by Erdös and Rado in [2] of the cardinal arithmetic
versions of the axiom of choice enables them to give their result a particularly
simple expression. So simple, indeed, that the elegant construction underlying
it is not brought to the fore. As it happens there is a nontrivial combinatorial
theorem about uncountable monochromatic sets which this construction serves
up, and it deserves to be isolated.

The referee for this paper made some very helpful comments and these are
recorded in an appendix to the online version of this paper at

www.dpmms.cam.ac.uk/~tf/erdosrado.pdf.

Arithmetic notations

An aleph is a cardinal of a wellordered set. ℵα is the αth aleph, and in this
usage α is of course an ordinal. ℵ(α) is the least aleph 6≤ α, and in this usage
α is a cardinal not an ordinal, and the Hebrew letter is being used to denote
Hartogs’ aleph function. When α is itself an aleph we often write ‘α+’ for
‘ℵ(α)’. By abuse of notation we will often use a notation denoting an aleph,
such as ‘ℵ(α)’ or ‘ℵκ’ to denote also the corresponding initial ordinal. Finally
i0(α) =: α; in+1(α) =: 2in(α).

Combinatorial notations

[X]n is the set of unordered n-tuples from X. “α → (β)γ
δ ” means: take a set

A of size α, partition the unordered γ-tuples of it into δ bits. Then there is a
subset B ⊆ A of size β such that all the unordered γ-tuples from it are in the
same piece of the partition. Here γ will always be in IN, and α, β and δ will be
infinite cardinals.
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Points of a tree are nodes, and they have children; the set of children of a
node is a litter.

The result

The proof will follow closely a standard procedure for proving Ramsey’s theorem
that (∀nm)(ω → (ω)n

m). We start by considering the case n = 2 and proceed
to larger n by induction. We start by proving without AC the special “binary”
case, first shown in [1].

REMARK 1. ℵ(222κ

) → (ℵ(κ))22.

Proof:
Let 〈K, <K〉 be a wellordering of length ℵ(222κ

), and ∆ a two-colouring of
[K]2 making every unordered pair red or blue. We will find a set monochromatic
for ∆.

The idea is to remove ordered pairs from < to obtain a wellfounded tree
with

The Nice Path Property: for all a, if b and c lie on the same
branch as a and beyond a, then {a, b} and {a, c} are the same colour.

We will delete ordered pairs by a recursion on <K .
At each stage we have in hand an element a and a wellfounded strict partial

ordering <a—which is initialised to <K . We use a to discard some ordered
pairs.

We reach stage a equipped with the strict partial order
⋂
b<a

<b, which we

abbreviate to <<a. We will weed out some ordered pairs from <<a to obtain
<a. We consider the members of {x : x >>a a}. To ensure that the nice path
property holds of the new—stricter—order we end up with we must ensure that
whenever b and c in {x : x >>a a} are joined to a by edges of different colours
then the new order believes they are incomparable. We will tease apart the
points >>a a into two rays, the first containing of those elements joined to a by
a red edge and the second containing those joined to a by a blue edge; points
in different rays will have no common upper bound according to <a.

Accordingly, if a <<a b <<a c, and b and c are joined to a by edges of
different colours, then we delete the ordered pair 〈b, c〉 from <<a. The result is
<a.

After κ steps we have performed this for every a ∈ K and the set of those
ordered pairs that remain—let us call it <′—is a wellfounded partial order with
the nice path property. We had better check this.

1. <′ is wellfounded because any subset of a graph of a wellfounded relation
is itself a graph of a wellfounded relation.
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2. <′ has the nice path property. The two clauses that need checking are
transitivity and the property that incomparable elements have no common
upper bound.

(i) transitivity. It will fail to be transitive if there is b <′ c and c <′ d but
b 6<′ d. In this case we know c <K d. But since b <′ c, we know that for
any a <K b, {a, b} and {a, c} are the same colour. Similarly since c <′ d,
we know that for any a <K c, {a, c} and {a, d} are the same colour. But
then, for any a <K b, {a, b} and {a, d} are the same colour.

(ii) the incomparable element condition. If we “separate” b and c as above
then we cannot keep d above both b and c because {a, d} must be the same
colour as both {a, c} and {a, b} which is impossible.

So 〈K, <′〉 is a tree, and a binary tree at that, because there are only two
colours.

We want this tree to have a branch in it of length at least (size) ℵ(κ). If
all branches die within ℵ(κ) steps then there are at most 2ℵ(κ) points in K, so
ℵ(222κ

) ≤ 2ℵ(κ). This step relies on the fact that a perfect binary tree of height
α has precisely 2α points. This is true as long as there is a choice function on
the set of litters, but this is a nontrivial assumption. Fortunately it is true here:
the litters are uniformly ordered because one child in the litter is joined to the
parent by a blue edge and one by a red edge.

So if all branches die within ℵ(κ) steps then ℵ(κ) ≤∗ 22κ

whence we would
have ℵ(222κ

) ≤ 2ℵ(κ) ≤ 222κ

, contradicting the definition of ℵ(222κ

).
So there is a branch of length ℵ(κ). Every element in this branch can be

thought of as a red point (if it is joined to all later points in that branch by a
red edge) or as a blue point (if it is joined to all later points in that branch by a
blue edge). So there are either ℵ(κ) red points or ℵ(κ) blue points, so one way
or another we get a monochromatic set of size ℵ(κ).

We proved slightly more than we will need or exploit. What we proved
was that the tree has a branch of length greater than ℵ(κ) whereas we do not
actually exploit anything beyond the fact it has a branch of length at least ℵ(κ).

Increasing the exponent

Next we tackle the “higher exponent” version, as seen in [2] (item (95) p 471).
We will prove the following by induction on n

THEOREM 1. ℵ(i3n(κ)) → (ℵ(in−1(κ)))n+1
2

We have just proved the case n = 1, so let us attack the inductive step.
Let 〈K, <K〉 be as before, and ∆ a 2-colouring of [K]n+1. We want to

discard ordered pairs to be left with a tree ordering < such that whenever
a1 < a2 < . . . < an < b1 < b2 then {a1 . . . an, b1} and {a1 . . . an, b2} are the
same colour.

So, given an n-tuple a1 <K a2 <K . . . <K an and b1 <K b2 beyond an we
can “separate” b1 from b2—as in the binary case—whenever {a1 . . . an, b1} and
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{a1 . . . an, b2} are coloured differently. We do this by deleting the ordered pair
〈b1, b2〉 from <K , and we can do this simultaneously for all b1 < b2 beyond an.

So the algorithm performs this procedure iteratively, once for each n-tuple
a1 < a2 < . . . < an, and considers these n-tuples in lexicographic order.

Now we must check as before that the set of ordered pairs that remain is a
wellfounded tree with the nice path property.

The chief complication is with the branching number. To be able to run the
cardinality argument as we did above we need to be able not merely to bound
the size of the litters but to order all the litters uniformly. We need to be able
to inject all litters simultaneously into some fixed set of size 2ℵ(α).

Each litter is indexed by colours, in the sense that for no node ν can two
children have the same colour. ‘Colour’ here does not refer directly to ∆: two
children c and c′ of ν have different colours as long as there is an n-tuple
〈a1 . . . an−1, ν〉 such that 〈a1 . . . an−1, ν, c〉 and 〈a1 . . . an−1, ν, c′〉 are coloured
differently by ∆. How many colours does that make? Clearly, 2-to-the-power-of
the number of such n-tuples. But this tells us how to label the colours uni-
formly. Fix a wellordering 〈W,≤w〉 of length ℵ(κ). Think of the colour of c as
the set of n-tuples~i from W such that ∆ colours 〈ai1 . . . ain , c〉 blue. This works
uniformly for all litters, and means that we can argue that the tree is one where
every node has at most 2ℵ(κ) children, and is of height ℵ(κ) and has therefore
at most (2ℵ(κ))ℵ(κ) = 2ℵ(κ) points, which is impossible as before.

Any path through this tree has the property that for every n-tuple
〈a1 < . . . < an〉 on it, all tuples 〈a1 . . . an, c〉 with c > an are coloured the same
by ∆. Thus we have a two-colouring of n-tuples from a set K of size ℵ(κ),
and we have obtained this from a two-colouring of the n + 1-tuples from an
ℵ(222κ

)-sized superset of K
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1 Referee’s comments on “Erdös-Rado without
Choice

Before reading this paper I was not familiar with the original proof of the Erdos-
Rado Theorem. In graduate school I learned the proof using the downward
Lowenheim-Skolem argument as is given, for example, in Chang and Keisler,
Model Theory or in Jech, Set Theory. I think this proof is due to Steve Simpson.
(Abstract in the Notices of AMS 1970).

I did look up the proof given in:

[EHMR] Erdos, Hajnal, Maté, Rado, Combinatorial set theory: partition
relations for cardinals. Studies in Logic and the Foundations of Mathematics,
106. North-Holland Publishing Co., Amsterdam, 1984.

which I am guessing is equivalent to the original proof. It seems to me that
their construction of a partition tree is essentially equivalent to the proof in this
paper. They also mention the tree relation on κ see §18 p.100 but I didn’t read
that section carefully.

Let ℵ(X) be the Hartog’s cardinal for X, i.e., the least ordinal κ for which
there is no embedding of κ into X. I sketched their proof below to make sure it
isn’t using the axiom of choice and for my own amusement.

Prop. [EHMR] page 88

ℵ(2<ω1) → (ω1)22

proof:
Let κ = ℵ(2<ω1) and suppose c : [κ]2 → 2 is any coloring. For each f ∈ 2<ω1

inductively define S(f) ⊆ κ as follows:

1. S(∅) = κ.

2. If dom(f) = λ is a limit, then S(f) = ∩α<λS(f |α).

Otherwise dom(f) = α + 1:

3. If S(f |α) is empty, put S(f) = ∅ and s(f) = 0.

4. If S(f |α) is nonempty, choose s(f |α) to be the minimal element of S(f |α)
and define

S(f) = {β ∈ S(f |α) : β > s(f |α) and c(s(f |α), β) = f(α)}

5



For nonempty S(h),

S(h) = {s(h)} ∪ S(h0) ∪ S(h1)

and this union is disjoint. Since it is impossible to embed κ into 2<ω1 there
must be some α ∈ κ which is not equal to s(h) for any h ∈ 2<ω1 . But for such
an α there exists a unique F ∈ 2ω1 with α ∈ S(F |β) for every β < ω1. By
construction {s(F |β) : β < ω1} is an end-homogeneous set. We pull from it a
homogeneous set of order type ω1.

QED

The proof seems to generalize to show that

ℵ(2<γ) → (γ)22

for any indecomposable1 ordinal γ.
It seems to me that 2<ω1 embeds2 into 22ω

and hence ℵ(2<ω1) ≤ ℵ(22ω

) and
thus

ℵ(22ω

) → (ω1)22
But I am using here that ω2 = ω which wouldn’t be true in general.

In the paper (see Theorem 4.1)

[K] Kruse, A. H. Some results on partitions and Cartesian products in the
absence of the axiom of choice. Z. Math. Logik Grundlagen Math. 20 (1974),
149–172.

it is shown that

Prop. [K]. ℵ(2<ω1) ≤ (ℵ(2ω))+

proof:
Suppose h : δ → 2<ω1 is one to one. For each β < ω1 let

Sβ = {γ < δ : h(γ) ∈ 2β}

Let γβ be the order type of Sβ . Since there is a bijection between 2ω and 2β

it is clear that γβ < ℵ(2ω). Hence using the canonical order type embedding
maps we get that δ is embeddable into ω1 × ℵ(2ω) = ℵ(2ω). QED

So as a Corollary we get
1if A ∪B = γ then either A or B has order type γ
2Map σ ∈ 2α; (where ω ≤ α < ω1) to the set

{(R, x) ∈ P (ω × ω)× 2ω : ∃θ (α, <) 'θ (ω, R), ∀β < α σ(β) = x(θ(β))}

where the notation above means that θ : α → ω is an isomorphism.
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(ℵ(2ω))+ → (ω1)22

I think if you use Kruse’s 4.1 you get that in general

ℵ(2<ℵ(X)) ≤ ℵ(2X)+

and so we have
ℵ(2X)+ → (ℵ(X))22.

I am not sure if this is always better than Forster’s:

ℵ(222X

) → (ℵ(X))22.

In models of the axiom of choice,

ℵ(2X)+ < ℵ(222X

)

and the axiom of determinacy gives ℵ(2ω)+ = ω2 while ℵ(22ω

) is at least the
order type of the Wadge ordering which (I believe) is much greater than the
first weakly inaccessible.

Q. Is it consistent with ZF that there is a set X with

ℵ(222X

) < ℵ(2X)+?

In regard to the Sierpinski-Hartog Theorem mentioned in the abstract,

Hickman, John L. Λ-minimal lattices. Z. Math. Logik Grundlag. Math. 26
(1980), no. 2, 181–191.

shows (Thm 10) that it is relatively consistent with ZF to have a set X such
that

ℵ(X) = ℵ(22X

).

I believe that in Hickman’s model ℵ(X) = ℵω but3

ℵω 6→ (ℵω)22

hence in Hickman’s model:

ℵ(22X

) 6→ (ℵ(X))22.

3consider the coloring c(α, β) = 0 iff ∃n ℵn < α, β < ℵn+1.
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Let ker be the least κ such that κ → (ω1)22. Then by using the Sierpinski
partition4

ℵ(2ω) ≤ ker

Hence by Kruse
ℵ(2ω) ≤ ker ≤ (ℵ(2ω))+

I wondered if anything more could be said about ker.

Example 1. In a model of the axiom of determinacy,

ω1 = ℵ(2ω) = ker < ω2

Probably the consistence strength of this is much less. To get the consistency
of ω1 → (ω1)22, I think should only need the consistency of a weakly compact
cardinal. Jech showed the consistency of ω1 measurable using the consistency
of a measurable. Probably someone has done the same for weakly compact.

Example 2. Take the Levy collapse G of the smallest inaccessible κ in L to
ω1 and look at L[R] in L[G], then we get

ω1 = ℵ(2ω) < ker = ω2

To see that ω1 6→ (ω1)22 note that there is a κ-Aronszajn tree T ⊆ 2<κ in
L. In L[G] the tree T is an ω1-Aronszajn tree5. In L enumerate T = {xα :
α < ω1} (where ω1 means ω

L[G]
1 = κ) and take the Sierpinski partition. But

a homogeneous H ∈ [ω1]ω1 gives a branch f ∈ 2ω1 thru T : i.e. put σ ⊆ f
iff σ ⊆ xα for all but countably many α ∈ H. (Probably there is a simpler
argument for this case.)

Q. Can we get the consistency of ℵ(2ω) < ℵ(2<ω1) without using the consistency
of an inaccessible cardinal?

Q. Does ℵ(ω<ω1) → (ω1)2ω?

The EHMR proof seems to break down at the last step, extracting a homo-
geneous set from an end-homogeneous set. The problem is that ω1 might be the
countable union of countable sets.

4given xα ∈ 2ω distinct for α < κ put

c(α, β) =

{
1 if α < β and xα <lex xβ

0 if α < β and xα >lex xβ

Even without using the axiom of choice, the order type of ω1 cannot be embedded into the
lexicographical order on 2ω (or for that matter the usual order on R).

5To see that T has no branch, note that in L given any sequence (pα : α < κ) of elements
of the collapsing poset we can find Γ ∈ [κ]κ such pα and pβ are compatible for any α, β ∈ Γ.
Hence if f ∈ (2κ ∩ L[G]) is a branch of T , then in L we could find pα and σα ∈ T such that

pα 
f |α = σα

But then (σα : α ∈ Γ) would be a branch thru T in L.
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Ali Enayat writes:

I ran across your paper on Erdos-Rado without choice on your website. I have
downloaded the paper to look at it more carefully (but I did look at the referees
comments). I just wanted to bring your attention to one place in the literature
where a similar result is established: there is an old paper of Keisler and Morley
on elementary end extensions of models of set theory in Israel J. Math, 5 (1968),
pp. 49-65), where in the *appendix* to section 4, almost at the end of the paper,
a version of Erdos-Rado without choice is proved. This choice-free version is
needed in their work in order to prove that many of their results in the paper
that seemingly only hold for models of ZFC, indeed hold for models of ZF as
well.
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