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ABSTRACT

Many mathematical objects arise from equivalence classes, and invite implementation
as those classes. Set existence principles that would enable this are incompatible with
ZFC’s unrestricted aussonderung but there are set theories (e.g. NF and Church’s
CUS) which admit more instances than does ZF. NF provides equivalence classes for
stratified relations only. Church’s construction provides equivalence classes for “low”
sets, and thus—e.g.—a set of all (low) ordinals. However that set has an ordinal in
turn, which is not a member of the set constructed, so no set of all ordinals is obtained
thereby. This “recurrence problem” is discussed.

This essay can be seen as a non-technical companion to [6] and is, like it, a
precursor to—and will be subsumed into—the longer book-length treatment of
these matters that I have promised myself I will write. !

Introduction

I would like to start off by insisting on some terminology: what we try to do
to cardinals, ordinals (and other mathematical entities) when we come to set
theory is not to define them but to implement them. We don’t need to define
cardinals: we know perfectly well what a cardinal is: a cardinal is that thing
that two sets have in common (i.e., to which they are related in the same way)
precisely when they are equinumerous. If we wish to tell a story in which every-
thing is a set then we have to have ways of implementing these mathematical
objects from outside set theory as sets. Inattention to the distinction between
definition and implementation can result in absurdities. For example, with the

T am very grateful to Roy Cook and Erich Reck for the invitation to give a talk under
this title at their thoroughly enjoyable and instructive workshop, and for the opportunity it
provided me to get my thoughts in order.



von Neumann implementation of cardinals and ordinals into set theory it hap-
pens that the three distinct mathematical objects (i) the ordinal w, (ii) the set
IN of natural numbers, and (iii) the cardinal number R are all implemented as
the same set. (The set itself has a purely set-theoretical characterisation as the
set of wellfounded hereditarily transitive finite sets). These three mathematical
objects are all distinct, and—however convenient it may be to implement them
in set theory by the same sets—it would make no sense to attempt to define
them to be the same. It’s the same mistake as trying to define 7 to be 22/7.2

This importance of this distinction is surely one of the morals one can draw
from [1]. Benacerraf’s point about the Zermelo naturals and the von Neumann
naturals is that they can’t both be a correct account of what natural num-
bers are; what he doesn’t say—but what thoughtful readers can work out for
themselves—is that they can nevertheless both be acceptable implementations
of natural numbers. There is a story one could tell about the emergence of
the concept of implementation (nowadays folklore among computer scientists),
about its roots in mathematics, and about how it can feed back into Philosophy
of Mathematics and into mathematical praxis; it should be told.

Confusing definition with implementation does more than merely annoy
pedants. It can—and all too often does—lead people into the error of thinking
that they have proved something about a suite of entities when the only thing
they have actually proved is the corresponding fact about the sets that imple-
ment those entities. For example, I have seen it claimed that, given that the
order relation on (von Neumann) ordinals is €, then the wellfoundedness of the
order relation on ordinals follows easily from the axiom of foundation (the ax-
iom that says that € is wellfounded). By resolving to use the word ‘implement’
instead of ‘define’ we arm and protect ourself against such craziness and we set
off on the right foot.

To implement a suite of mathematical objects into set theory is to provide
an interpretation Z from a theory T of those objects into a theory T’ of set
theory. In recent years logicians have become increasingly interested in studying
interpretations between theories as mathematical objects in their own right®, not
least for what they can tell us about relations between theories.

One notion that has emerged is that of synonymous theories. Synonymy

2While I am on this subject I'd like to draw my readers’ attention to the strange circum-
stance that, if we amplify the von Neumann intepretation by the device (which Erich Reck
tells me goes back at least to Dedekind) of thinking of integers as equivalence classes of ordered
pairs of naturals in the familiar way, then the integer O is the same set as the identity relation
on IN; the integer -1 is the successor relation on IN; every integer is a binary relation, and—in
a curious echo of Church numerals in A-calculus—addition of integers is relational composi-
tion! This is tolerable if we are thinking of these sets as implementations of the mathematical
entities under consideration, but if integers really are sets, then the integer 0 really would be
the same thing as the identity relation on IN, and this is surely a reductio ad absurdum. If the
integer O is the same thing as the identity relation on IN then we can surely all stop worrying
about whether or not the number 1 is Julius Ceesar (It is—of course!—the predecessor relation
on IN.)

3My Doktorvater Adrian Mathias used to say that a logician is that kind of mathematician
that thinks that a formula is a mathematical object.



of two theories is a very strong kind of mutual interpretability. Roughly, two
theories are synonymous iff they have the same models. A standard example
is Boolean rings and Boolean algebras. A good place to start is with [10].
Synonymy will crop up here, later.

NF

The brief the organisers gave me specifically mentioned NF and natural numbers,
and the two are joined in this context because of the possibility held out by NF
(being a set theory with a universal set) of implementing natural numbers in
a—mnaturall—way as equipollence classes. It has been felt since the days of
Russell and Frege that this is a natural way to implement entities arising from
equivalence relations.

This is a fruitful restriction, but a restriction nonetheless, and in several
ways: NF is not the only set theory that allows a universal set, since there
are also CUS and Positive Set Theory. CUS (see [3]) and its variants resemble
NF in allowing large sets and in allowing the implementation of cardinals and
suchlike as equivalence classes. At present it is still unclear whether or not NF is
consistent?, but we do at least know that NFU is consistent, and it does all the
good things NF does about large sets, thereby facilitating the implementation
of mathematical objects as equivalence classes.

The second restriction is to entities arising from equivalence relations. It is
worth noting en passant that not all entities in need of implementation arise
from equivalence relations. Typically, a formal theory—of widgets, as it might
be—will need to be able to quantify over ordered pairs of widgets. And there
is no obvious way of thinking of ordered pairs as equivalence classes

The third restriction is that even those mathematical entities that do arise
from equivalence relations do not have to be implemented as equivalence classes,
or even as restrictions of them: the obvious example is the von Neumann im-
plementation of ordinals in ZF(C) as hereditarily transitive sets.

Nevertheless we are going to restrict ourselves to entities arising from equiv-
alence relations. . . and not only because such entities are the easiest to discuss,
but also because they seem to be the chief preoccupation of the neologicists.

Many mathematical entities arise from equivalence relations, and it is natu-
ral to feel that such entities should in principle be implementable in set theory
as equivalence classes. Obvious examples are cardinals (equivalence classes un-
der equipollence), ordinals (isomorphism classes of wellorderings); an (abstract)
group arises from an isomorphism class of concrete groups; points-at-infinity
arise from the equivalence relation “parallel-to” on lines. One could go on. As
mentioned above, NF set theory has the pleasing feature that most mathemat-
ical entities arising from equivalence classes can in fact be implemented in NF
straightforwardly as those equivalence classes. In theories with unrestricted sep-
aration (such as Zermelo and Zermelo-Fraenkel) the equivalence classes cannot

4though the situation may well have changed by the time this document goes to the printer.



be sets because they would lead to a universal set and thence—by unrestricted
separation®—to the Russell Class. Things work in NF because NF does not
have unrestricted separation (it has separation only for stratified formulae) but
it does have comprehension for stratified formulse—which Zermelo and ZF do
not. NF thus lacks unstratified separation, but does have stratified comprehen-
sion. Swings and roundabouts.

“Stratified”? A formula of set theory is stratified iff by assigning numerical
type subscripts to its variables we can turn it into a wff of simple type theory.
That is to say, a wif ¢ is stratified iff we can find a stratification assignment
(‘stratification’ for short) for it, namely a map f from its variables (after relet-
tering where appropriate) to IN such that if the atomic wif ‘z = y’ occurs in
¢ then f(‘2’) = f(‘y’), and if ‘¢ € y’ occurs in ¢ then f(‘y’) = f(‘z’) + 1.
(NB: I really do mean ‘variable’ not ‘variable-occurrence’: all occurrences of
any one variable must receive the same natural number under the stratification
assignment; without this additional restriction every formula in the language
of set theory would be stratified!). Variables receiving the same integer in a
stratification are said to be of the same type. Another way of thinking about
stratification is to say that a formula of the language of set theory is stratified
iff it could become a formula of the language of type theory by decorating its
variables with integer subscripts.

We also need the notion of a homogeneous formula. A formula is homoge-
neous iff it is stratified and additionally all its free variables are of the same
type. Thus ‘z = y’ is homogeneous but ‘z € gy’ is not, altho’ it is stratified.
We can define the notions of stratified relation and stratified function and of
homogeneous relation and homogeneous function in the obvious way. The sig-
nificance of this notion of homogeneity is that if ' is a homogeneous relation
then NF proves that the graph of F' is a set. Further the closure of a set under
a homogeneous function is also a set. Mere stratification is not sufficient. Thus
the graph of € (which is stratified but inhomogeneous) is not a set, and the
transitive closure of a set (its closure under €) is not always a set. Nevertheless
the “skewed-membership” relation {{({z},vy) : © € y} is a set, and it contains in
some sense the “same” information. This phenomenon of sethood of “skewed”
versions of things that cannot themselves be sets is frequently encountered, and
is very important.

NF is now axiomatised by Extensionality plus a comprehension scheme for
stratified expressions: {x : ¢(z,%)} (parameters are allowed) is a set. It cannot
be emphasised too loud or too often that NF is a one-sorted set theory: the
variables in the formulse do not have types; they are given types only while one
is checking their host formula to see whether or not it is stratified (tho’ one
can—and does—say that, in ‘z € y’, ‘@’ has a type one lower than the type of
‘y’). At no stage do the sets of which NF talks to us ever have types.

As the reader can see, it is easy enough to explain what the stratification
condition on formulee is, but it’s rather more difficult to explain what it means

5Separation is the principle that every subcollection of a set is a set.



deep down. It certainly looks like a mere syntactic trick, but there is a complete-
ness theorem that provides a semantic motivation: it turns out that stratified
expressions are precisely those preserved by all applications of a construction
known as Rieger-Bernays permutation models®. That much is fairly straight-
forward. It also turns out—more significantly but also more obscurely—that all
(or nearly all) mathematical notions can be implemented into set theory in such
a way that the relations-between-sets that implement the relations-between-the-
original-mathematical entities get captured by stratified expressions—and those
that can’t are in some interesting but obscure sense special. It’s not entirely
clear how to express this fact, it’s less clear what its significance is, and even
less clear still whether these two facts (the completeness theorem and the imple-
mentability) make stratification an appropriate criterion for set existence. After
all, the fact that stratification is important and natural doesn’t obviously make
it the correct criterion for a formula to have an extension, for its real significance
may lie elsewhere.

Stratification arises fairly straightforwardly from a syntactic device of Russell-
and-Whitehead that is designed to forestall Russell’s paradox. However there is
also an endogenous typing in Mathematics which on the face of it has nothing
to do with set theory. It found its way from mathematics into the theory of
programming languages, where it is commonplace to have a typing discipline
that distinguishes naturals from floating-point reals, and both of them
from booleans and arrays. The striking fact (and I am trying to write a book
about this) is how often these two notions of typing coincide in practice and
how well they fit.

Until that book is written I shall restrict myself to the observation that what
this neat fit means for NF studies is that, for any naturally occurring kind of
mathematical entity (at least those which arise from equivalence classes) there
will be an NF-implementation such that

(i) the entities themselves (the tokens) are implemented as sets;

(ii) the collection of all of the tokens is implemented as a set, and

(iii) (at least some of) the natural operations on them are captured
by homogeneous formulse and their graphs implemented as sets.

(The weasel words in brackets in (iii) are needed because of complications
with quotients; for example: “Gj is the quotient of G over its normal subgroup
G4” is stratified but not homogeneous.)

In particular the three expressions in the language of set theory that say
(a) “x and y are equinumerous”;

(b) “x is the set of all things equinumerous with y”; and
(¢) “xis an equinumerosity class”

6This result (see [5]) is very much in the spirit of the results in classical model theory that
say things like: universal sentences are precisely those preserved under substructure; universal
existential sentences are precisely those preserved under colimits.



are all stratified—and (a) is homogeneous. The fact that (a) is homogeneous
implies that—in NF—the graph of the equinumerosity relation is a set; the fact
that (b) is stratified implies that every (Frege) cardinal is a set (i.e., every set
has a Frege cardinal and that cardinal is a set) and the fact that (c) is stratified
implies that the collection of all (Frege) cardinals is a set. Observe that ‘y = |z’
(“y is the cardinal of z”) is stratified. However the type of ‘z’ is one less than
the type of ‘y’, so ‘y = |z|” is not homogeneous. This echoes the fact that if y
is the cardinal of  then x and y are objects (prima facie) of different abstract
data types. In contrast “x and y are cardinals and z < y” is homogeneous.
It turns out (I shall spare the reader the technical details) that all the usual
operations on natural numbers turn out to be homogeneous.

The Recurrence Problem

Despite what was said above about how Mathematics can be implemented into
set theory in a stratified way, complications can arise if it happens that the
flavour of mathematical entity whose implementation we are discussing (as it
might be widgets) has the feature that the family of isomorphism classes of wid-
gets supports a widget structure. This widget structure of the family of widgets
can result in stratification conflicts. There are many examples of this kind of
thing, and Feferman writes about them in [4] (tho’ not in terms of stratification
conflicts). The collection of all categories supports a category structure; the fam-
ily of all [isomorphism classes of] semigroups supports a semigroup structure,
namely direct product; the family of wellfounded binary structures supports a
wellfounded relation, namely end-extension; and so on. In [4] this phenomenon
is mentioned as a motivation for developing a foundation in which one can talk
about universal objects: the set of all groups, of all cardinals, and so on. The
best and simplest illustration of what one might call the recurrence problem? (as
well as being the one most pertinant to us at this Frege workshop) comes from
cardinal arithmetic—specifically the arithmetic of IN, the natural numbers.
Natural numbers count [multiplicities/collections of] concrete objects—at
any rate in the first instance it’s concrete objects that they count. But once
natural numbers have appeared, we have the possibility of counting [multiplic-
ities/collections of] natural numbers. Can we count these new collections with
the same natural numbers used to count concrete objects? Or does that count-
ing require a novel abstract data type of a new kind of number? (Sheep farmers
in the Pennines use distinctive numerals—which are in fact p-celtic words—for
counting sheep, rather than the ordinary english words they use for counting
everything else. I have not been able to find a linguistics literature on the possi-
bility of using different suites of counting-words for objects of different flavours.)
The answer will depend on how squeamish you are. Computer scientists are used
to a situation where two distinct types of widget and wombat will give rise to the
two different types of widget-1list and wombat-1list; we say of the constructor

"I’ve just invented this expression, in case you were wondering why you’d never seen it
before.



list that it is polymorphic. However the output of the length function applied
to lists is always taken to be monomorphic: the same kind of number is used to
measure both the length of lists-of-widgets and the length of lists-of-wombats.
The polymorphism of lists is lost in the progression to natural numbers. Most
of us are happy with monomorphic natural numbers. It seems natural enough:
two multiplicities have the same cardinal iff there is a bijection between them,
and there seems to be no reason why two multiplicities of different types should
not have a bijection between them. And, indeed, the natural numbers of NF
are monomorphic. However there is a ghost of the primordial polymorphism
still tangible in NF. The cardinal number of {m : m < n} (where n is a given
natural number) is a perfectly ordinary natural. So there is a function sending
the natural number n to the natural number [{m € IN : m < n}|. Specker called
this function T: Tn = [{m : m < n}| for n a natural number. ‘m = Tn’ is
stratified but inhomogeneous, and the graph of T is not provably a set. Rosser’s
axiom of counting from [8] says—in NF—that this function is the identity, and
we now know that Rosser’s counting principle is not a theorem of NF. Outside
NF it says that among the sets belonging to a natural number n is the set
{m : m < n} of natural numbers smaller than n.

The idea that—more generally—each ordinal counts the set of its predeces-
sors [in their natural order] seems to be in Cantor [2], indeed to be coeval with
the idea of ordinal itself.

The recurrence problem turns up also in CUS. The Grand Scheme with CUS
is to construct from a given model of ZF a new model with big sets while main-
taining the wellfounded sets of the new model as a model of ZF—in fact an
isomorphic copy of the original model. CUS can be axiomatised by (i) comple-
mentation: every set has a complement; (ii) The wellfounded sets are a model
for ZF; (iii) replacement holds for wellfounded sets (the image of a wellfounded
set in a function is a set) and finally a scheme of existence for {z : z ~ y} when-
ever y is a wellfounded set and ~ is a kind of generalised equipollence relation to
be specified. See [3] for details. Sets (in the new model) that are the same size
as wellfounded sets (in the new model) are said to be low. In Church’s original
construction he provides a universal set. Sheridan [9] shows how to add the
singleton function as a set. Church shows how, for more-or-less any equivalence
relation ~; to add ~-equivalence classes for low sets. (Equivalence classes for
non-low sets are not provided.) He explicitly does this for equipollence (obtain-
ing cardinals—and also generalisations that he calls j-cardinals) and, altho’ he
doesn’t do it for arbitrary equivalence relations, it is clear that he knows how
to. There is some suggestion (for example at the end of [7]) that the theories
satisfied by the models furnished by these constructions are synonymous with
the theory of the model that is operated on. If correct, this would account for
the comparative straightforwardness of the constructions that give us the uni-
versal set, the singleton function, the j-cardinals of low sets and so on, for that
straightforwardness would be a reflection of the fact that these new entities are
merely pointless epiphenomena with no mathematical content. But that is yet
to be established.



However it is significant that the construction generally does not provide
global equivalence classes, but merely equivalence classes of low sets. And the
difficulty we experience in providing global equivalence classes seem to arise
only where there is a recurrence problem. Why does recurrence cause a prob-
lem? Suppose the family of all equivalence classes of widgets supports a widget
structure. One adds—by a Church-style coding trick—equivalence classes of the
widgets in one’s field of view (i.e., the low widgets). But then (in consequence of
the Church construction) there are now new widgets, and they might not all be
low and so might not fit into the equivalence classes so far provided. So one re-
peats the construction. .. with potentially the same unsatisfactory result. There
doesn’t seem to be any global argument that would tell us that this process
should reach a fixed point. Thus it comes about that no known enhancement
of Church’s construction gives us a model containing a set of all ordinals. NF
alleges that there is such a set, and thus in effect assumes that the recurrence
problem has been solved. No wonder the consistency problem for NF is so hard.

Burali-Forti

The most notorious example of the recurrence problem is undoubtedly the
Burali-Forti paradox. Recall that an ordinal is a mathematical object associated
with a wellordering: every wellordering has an ordinal, and two wellorderings
have the same ordinal iff they are isomorphic. One can think of ordinals as
equivalence classes of wellorderings (which is how they fall under the rubric of
this essay) and that indeed is precisely how they are implemented in NF.

The Burali-Forti paradox arises because every set of ordinals is naturally
wellordered by <o, the order relation on ordinals, and so must have an ordinal.
Notorious it may be, but its notoriety has not resulted in it receiving close
attention—rather in it being avoided and—in consequence—remaining poorly
understood ...and certainly never mentioned in front of the children. The
elephant in the drawing room? Wrong elephant. ... It’s more like the elephant
in the old Indian trope about the five blind men. You have to approach it from
more than one point of view if you are to have any hope of understanding what
is going on.

In the hope of obtaining some enlightenment, and on the assumption that
the reader is familiar with the ZF analysis of Burali-Forti, let me concentrate
on an analysis from an NF perspective.

Let us take as our point of departure the idea that natural numbers are prima
facie polymorphic—and indeed that ordinals, too, are prima facie polymorphic.
That is to say, when widget and gadget are different types we not only dis-
tinguish (as we must) between the two types widget-1list and gadget-list, we
even distinguish between length-of--widget-1list and length-of--gadget-list,
even though both these types are flavours of natural number! Our point of de-
parture is to behave like Pennine sheep-farmers. Our first move is to identify,
to coalesce into one type all these types that look like natural numbers. In
particular we are going to regard the numbers-that-count-sets of [whatever] as



the same types as the numbers that-count-sets-of-numbers-that-count-sets-of-
[whatever]. Our second move is to say further that, not only is [{n : n < z}|
a number of the same type as x, but that it is actually identical to x. This is
Rosser’s Counting Principle. Initially at least we perform this coalescence only
on types of natural numbers (= finite ordinals)—it does seem to be safe there.
However we can contemplate (a third move of) extending it to the ordinals (I
suppose one should then call it Rosser’s extended Counting Principle) and this
is when the trouble starts.

I emphasised earlier that NF is a one-sorted theory: in particular it has only
one type of ordinal. We can in any case prove from first principles that every
set of ordinals (and there is now only one kind of ordinal) is wellordered by the
comparative-magnitude relation for ordinals (which we can write ‘<p,,’), so in
particular every initial segment S of the ordinals is wellordered by <o,, and
now Rosser’s Extended Counting Principle will tell us—if we let it—that the
order type of S is the least ordinal not in it.

NF tells us that the collection NO of all ordinals is a set, and is wellordered
by <on. And its length? If Rosser’s Extended Counting Principle were to be
believed then the length would have to be the first ordinal not in NO, and there
is of course no such thing. Clearly Rosser’s Extended Counting Principle fails
for at least some big ordinals.

What does this failure mean for NF? We must not forget that NF is a one-
sorted theory, so we cannot go back to our state-of-nature in which ordinals were
polymorphic; the effect is rather that—sometimes—where we would expect to
find a single ordinal we instead find a whole hall of mirrors of them. For example:
NO-ordered-by-<o,, has an ordinal, which we shall call ‘Qy’. What about the
ordering of the ordinals below €¢7 Rosser’s Extended Counting Principle would
lead us to expect that its order type should be €y, but it evidently cannot be.
It’s a distinct ordinal, which I suppose we will have to call ‘Q;’ ...and the
ordering of the ordinals below ; is of order type €5, and so on. Morally of
course all these €2, belong to distinct abstract data types, but since NF is one-
sorted they are one and all compelled to belong to the one same type, so NF
can express this insight only in a veiled or muted way. Dana Scott wrote to me,
when I was a Ph.D. student, that NF is really a type theory, and it must have
been this that he had in mind.

There are echoes here of the axiom of reducibility, but that is too difficult a
topic for a brief note such as this.
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