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Preface

The text which follows is a pantomime horse. The front part is a talk
I wrote for the mathematics seminar at the University of Canterbury in
second semester 2008 —in the expectation of a cancellation that in fact
never came. It was a tutorial written partly for a general mathematical
audience and partly to answer some questions of Bill Taylor’s, namely:

(a) to explain how to derive P-H by a compactness argument from Finite
Ramsey;

(b) to illustrate some of the ways in which P-H is stronger than Finite
Ramsey (tho’ the proof of independence from PA is not covered);

(c) to say something about the unstratified nature of P-H and what its
significance might be.

(c) was rather peripheral to the front part, but is central to the hind part.
The hind part is a talk prepared for OHYAST in Brussels in october 2008,
and I am grateful to the organisers of that conference for reproducing
these notes in the Cahiers. It is the result of my finally analysing P-H
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in an NF context. P-H exploits the notion of a ‘relatively large” set of
natural numbers. The fact that this is clearly an unstratified notion has
the makings of an embarrassment for NF studies, since NFistes always
blithely assert that all of arithmetic is stratified and can be done in NF
without any worries. Although the compactness proof is standard I spell it
out here in some detail in order to make clear how a failure of stratification
might arise. The question of how stratified are the various devices that we
need to exploit if we are to implement in arithmetic everything that we
normally take to be part of arithmetic deserves some examination. This
little essay is a report on work-in-progress.

1. Notation

When z is a finite set of naturals butlast(x) is « shorn of its top element.
[X]™ is the set of unordered n-tuples from X.

a — ()] says: take a set A of size «, partition the unordered y-tuples of
it into § bits. Then there is a subset B C A of size 8 such that all the
unordered y-tuples from it are in the same piece of the partition.

For Paris-Harrington we will also need the notion of a relatively large
subset of N: « C N is relatively large if |z| > min(z).

2. Motivation

I am grateful to Bill Taylor for prodding me into organising and clarifying
my thoughts on this question, and inviting me to give a talk about it. !
There are many reasons why this topic is of interest. The two that seem
to concern him and me most are

(a) it does not seem possible to give a straightforward proof of Paris-
Harrington along the lines of —for example— the proof given by
Rado of Ramsey’s theorems. The compactness proof of it (which is
the only one known to me) is significantly less effective even than
Rado’s (which itself is not completely effective since it uses excluded
middle on the predicate of infinitude on sets of naturals).

1. Thanks also to Dave Turner for finding (some of the) mistakes in my Part III lecture
notes on this subject.
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(b) the property of relative largeness which plays such a central role in
Paris-Harrington is ill-typed in at least two senses. As far as I know
the only person — other than the NFistes— to have noticed this fact
is Harvey Friedman 2, and he has not given voice to the thought —
that occurs to me from time to time— that the extra strength of
Paris-Harrington has something to do with this failure of typing.

3. Finite Versions of Ramsey and Compactness

There are finitary versions of Ramsey’s theorem. Indeed it was a fini-
tary version that Ramsey needed to prove his theorem about decidability
of universal formulee —he proved the infinitary version only because it
was easier. (Nowadays there are much easier proofs of both finitary and
infinitary versions).

The finite version we want is
Theorem 1. (Vmnk)(3j)(j — (m)}).

This is not the version Ramsey needed for his proof of his decidability
result, but is of more interest to us here, since it is this version (not the
version Ramsey needed for the decidability result) that can be spiced up
to give Paris-Harrington.

It’s not hard to see how one can prove (Ymnk)(3j)(j — (m)}) directly by
careful applications of Rado’s method; this method will prove 22" — (n)3

for example —though this is far from best possible: e.g., we know 6 —
(3)3-

However it is also possible to deduce this finite version of Ramsey’s the-
orem from the infinite version by a compactness argument. There are
several reasons why Ramsey didn’t do it that way. For one thing, the
first appearance of compactness for predicate logic did not appear until

2. Subject: [FOM] PA Incompleteness; Sun, 14 Oct 2007 10:02:58 -0400):

“In ‘relatively large’, an integer is used both as an element of a finite set and as a
cardinality (of that same set).

This is sufficiently unlike standard mathematics, that an effort began, at least
implicitly, to find PA incompleteness that did not employ this feature, or this kind
of feature.”
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the following year (1930) in a paper — [1]— of Gddel 3. For another,
the compactness proof is highly ineffective in that no bounds can be re-
covered from it; nobody in their right mind would try to do it that way
unless they had an ulterior motive. We do have such an ulterior motive:
since the proof of Paris-Harrington (at least the only proof known to me)
proceeds by a compactness argument it is very useful to run through the
compactness proof of finite Ramsey by way of a rehearsal for it. 4

So here is the compactness proof of Theorem 1,

(Vm, n, k)(3p)(p — (m)f)-

PROOF. — Suppose that claim is false, and that there are n, m, k in N
such that for all p € N there is a set P with |P| = p and a colouring
f:[P]™ —{1,2,...k} such that there is no set X C P with |X| = n and
|f“[X]™| = 1. Fix n, m, k, and for each p let Y}, be the set

{f:f:Lp)™ = [LEA-EX)(X C L p]
ANX|Z=n
NPT =1}

of bad k-colourings of the m-tuples of the naturals below p. (k and m are
fixed.)

(Beware: square brackets are here being used both to denote intervals in
N —as in [1, k] — and to denote the set of m-sized subsets of things — as
in [X]™.)

For any k, the set Fj of all k-colourings of m-tuples of initial segments
of N is countable. (Each initial segment [1,p] has only a finite set of m-
membered subsets and there are only finitely many ways of colouring the
set of those subsets). So we can uniformly wellorder F). Suppose this to
be done, somehow. Then, for each p, we set f,, to be the first element of
Y, in the sense of that ordering.

We are now going to define a (bad) partition 7 of [N]™*! into k pieces. You
are given a set x C N of size m+1 and have to decide which piece to put it
into. Its last member is p+ 1 for some natural number p. x\ {p+1} is now
a subset of [1, p] and is therefore a suitable input for f,. f,(z\{p+1}) is

3. Theorem X: thanks to the late Torkel Franzen for the citation.

4. There are other compactness arguments to be found in the literature: for example
Friedman’s proof of FFF.
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now a number < k, and that tells you which piece to put z into. (Slightly
more formally, put  into the fup(z)—1)(® \ {sup(z)})-th piece.) So 7
partitions [N]”*! into k pieces. We will show that 7 is bad.

With a view to obtaining a contradiction suppose X to be an infinite set
monochromatic for w. Let p + 1 be a member of X (and we will want to
be able to find arbitrarily large such p+1). Consider those (m + 1)-tuples
from X N[1, p+1] whose last element is p+1. What does 7 do to them? It
sends every such (m + 1)-tuple z to f,(butlast(z)), and — because X is
monochromatic — all these f,(butlast(z)) are the same, whatever x we
pick up. Now every m-sized subset of X N [1,p] can be turned into such
an (m+1)-tuple by the simple expedient of sticking p+1 on the end, so f,
sends every m-tuple from X N [1,p] to the same number < k. But that is
simply to say that X N [1,p] is a subset of [1, p] that is monochromatic for
fp. Now f, was chosen so that any set monochromatic for it was of size
less than n. So X N [1,p] is of size less than n. So —no matter how large
we pick (p+1) € X — we find that X N [1,p] has at most n members.
So | X| < n+1 and X was not infinite, contradicting the Infinite Ramsey
theorem. ]

We need to make a note here of the way in which this proof is less effective
than the proof of Rado’s given in the previous section. It is true that
Rado’s proof uses excluded middle — and is therefore beyond the pale for
the extremely-squeamish — but is is effective in the weak sense that, by
close examination of it, we can quite straightforwardly recover bounds for
witnesses to the existential quantifier. In contrast the proof we have just
given does not divulge bounds in this way. The reader will not be surprised
to be told that the proof we are about to give of Paris-Harrington will be
similarly tight-lipped.

4. Statementand Proof of the Paris-Harrington
Theorem

Theorem 2 (Paris -Harrington). For every n, m, k in N, there is p so large
that whenever f : [{1,2,...p}™ — {1,2,...k} there is a relatively
large X C {1,2,...p} such that |X| =2 n and |f“[X]™| = 1.

PrROOF. — We argue by compactness, as above.

Suppose there are n, m, k in N such that for all p € N there is f :
{L1,2,...p}]™ — {1,2,...k} such that there is no relatively large X C
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{1,2,...p} such that |X| =n and |f“[X]™| = 1. Fix n, m, k and p and
let Y be the set

{f:f:[{1,2,...p}]" = {1,2,.. .k} A-(3X)(X C{1,2,...p}
A |X| > min(X)
ANX|=Zn
ALFAXT™ = 1))
This time let Y}, be —not the set of

colourings-that-are-bad-in-the-sense-of-lacking-a-monochromatic-set-of-
size-n

but the set of

colourings-that-are-bad-in-the-sense-of-not-having-any-monochromatic-
sets-of-size-n-that-are-relatively-large.

As before, initial segments of the monochromatic set X will be monochro-
matic for the colourings f,. Now sets that are monochromatic for f, are
either smaller than n or are not relatively large. By considering initial
segments of X that are long enough we can take care of the first condi-
tion, so the only way they can manage to be monochromatic for f,, will be
by failing to be relatively large. So, for some large j, consider the initial
segment consisting of the first j elements of X. We now know that this is
not relatively large, so its first element must be bigger than j. So the first
element of X is at least j. But j could have been taken to be arbitrarily
large. O

5. The Quantifier Prefix of Paris-Harrington

Paris-Harrington is dramatically stronger than finite Ramsey (see [2] for
example) and one might well wonder whether or not there are any syntactic
clues to the source of this extra strength. The feature that chiefly caught
my interest in this connection is the unstratified/ill-typed nature of the
property of relative largeness, and we will get onto that in due course.

One obvious difference between Finite Ramsey and P-H is that P-H doesn’t
talk about colourings of tuples from arbitrary finite sets but of colourings
of tuples quite specifically from initial segments of the naturals.

However we will first get out of the way a simple observation about the
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quantifier prefix. First we rephrase Finite Ramsey as an assertion about
colourings of tuples from a finite set:

For all n,m,j in N

There is k in N so large that

For every set X of size k and

For every m-colouring y of [X]/

there is X/ C X with | X'| =n

and X’ monochromatic with respect to .

Next we rephrase Finite Ramsey as an assertion about colourings of tuples
of naturals. An enumeration of a set X is a bijection between X and an
initial segment of N. This enables us to extend the notion of relative
largeness from sets of natural numbers to subsets of arbitrary sets Y once
Y has been equipped with an enumeration: Y’ C Y is relatively large
with respect to an enumeration e of Y iff e“Y”’ is relatively large tout
court. Given X (as in the statement of the theorem) it is clear that once
we have found X’ C X (as in the statement of the theorem) we can pick
an enumeration e of X so that e“X’ = [0,n]. X’ is now relatively large
with respect to e. So here is Finite Ramsey phrased as an assertion about
relatively large monochromatic sets.

For all n,m,j in N

There is £ in N so large that

For every set X of size k and

For every m-colouring y of [X]/

there is an enumeration e of X and

there is X/ C X with | X'| =n

with X’ monochromatic with respect to x
and relatively large with respect to e.

Now that we have expressed Finite Ramsey in a syntax that is the same
as that used to express P-H we are in a better position to compare them.
Here is P-H.

For all n,m,j in N

There is k in N so large that

For every set X of size k and

For every m-colouring y of [X]7 and

For every enumeration e of X

there is X' C X

with X’ monochromatic with respect to x and relatively large with
respect to e.
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We have set out Paris-Harrington and Finite Ramsey above in something
very like Prenex Normal form. The two of them have the same matrix
(the stuff after the prefix) and the prefixes

(Ym, n, §)(3k)(VX)(Vx)(3e) (3X") and  (Vm, n, j)(3k)(VX)(Vx)(Ve) (3X')

are almost the same except that the innermost part of the quantifier prefix
of Finite Ramsey is (Je)(3X’) whereas the innermost part of the quantifier
prefix of Paris-Harrington is (Ve)(3X’). That is to say we have replaced
an existential quantifier with a universal quantifier: clearly we must expect
P-H to be stronger than Finite Ramsey.

However it is the subtle failure of typing exhibited by the concept of rel-
ative largeness that was my original reason for interest in this question
of difference in strength, and it is to this that the hindquarters of the
pantomime horse are devoted.

6. Paris-Harrington and Typing

There is a syntactic difference between Finite Ramsey and Paris -Harrington
in that the latter (but not the former —at least before we doctored it to
make it look more like P-H so we could compare the quantifiers prefixes)
has an occurrence of the predicate relatively large. This is significant be-
cause this predicate is ill-typed —and in two quite distinct ways: there
are two concepts of typing at play here. One is the kind of typing at work
in typed programming languages, and that is the one we deal with first.

6.1. (data)-type-checking

In languages like ML there is a polymorphic type-constructor list. It
acts on an arbitrary type « to give a type a-list. In turn we have
length which will take an object of type a-1list and output an object
of type num. Not —the reader will observe— an object of type a-num.
We could imagine a more strongly typed language in which length was
instead a polymorphic object of type a-list -> a-num. A type-checker
for such a language would be unable to find an « to type the concept of
relatively large since any attempt to do so would encounter an occurs-
check and would crash.
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6.2. Typing a la Russell-Quine

The other kind of typing we consider is the kind of typing used in Russell-
Whitehead and more specifically in the Quine set theories. The signifi-
cance in this context is that “z is relatively large” will be unstratified for
at least some implementations of natural-number-of.

There are many ways of implementing natural-number-of with a strat-
ified formula — at least in NF(U). To each such implementation we can
associate a concrete integer k£ which is the difference

(type-of ‘y’) — (type-of ‘z’)

in ‘y = |z|". In fact:

Theorem 3. For every concrete integer k there is an implementation of
natural-number-of making ‘y = |z|’ stratified with

(type-of ‘y’) — (type-of ‘@’) =k.

ProOF. — For k = 1 there is the natural and obvious implementation
that sets |z| to be [x.], the equipollence class of & —the set of all things
that are the same size as z. For k > 1 we take |z| to be (*~1([z].). (This
works for all cardinals, not just natural numbers.)

For k < 1 we have to do a bit of work, and although the measures we use
will not work for arbitrary cardinals they do work for naturals. We need
the fact that there is a closed stratified set abstract without parameters
that points to a wellordering of length precisely w. The obvious example is
the usual Frege-Russell implementation of N as equipollence classes which
we have just used above with k£ > 1, but it is probably worth emphasising
that we don’t have to use the Frege-Russell N here; whenever we have a
definable injective total function f where V' \ f“V is nonempty, with a
definable a & f“V, then

([{A:ac AN feAC A}

will do just as well. The usual definition of N as a set abstract is merely
a case in point. (It may or may not be worth noting that there is no
such set abstract in Zermelo or ZF!) Let’s use the usual N-as-the-set-of-
equipollence-classes.

Consider {¢*(n) : n € N}. It is denoted by a closed set abstract and has an
obvious canonical wellorder to length w. For every inductively finite set x
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there is a unique initial segment 7 of this wellordering equipollent to it, and
the function that assigns x to that initial segment is a set. We conclude
that the function x — Uki is an implementation of natural-number-of
that lowers types by k. O

Here is another proof. We can take |z| to be [y]~ for any y such that
Fuy~q. This gives us a natural-number-of x that is k& — 1 types lower
than z. For a natural-number-of x that is k + 1 types higher than x take
|z| to be [F“x].. O

7. Stratified and Unstratified versions of Paris-
Harrington in NF

To get the compactness proof of Paris-Harrington to work we need the
particular class abstract —Y), on page 102— to be a set. This is because
we want f, to be the first element of Y}, in the sense of a global wellordering
of the union of all the Y,s. There is a such a global wellordering all right,
and of course every subset of its domain will have a least element. Note
the italics! Mere subclasses are not guaranteed to have least elements.

This holds in general, of course. In the NF context Y, will be a set if “z
is relatively large” is stratified. It will be a stratified property as long as
natural-number-of lowers types by 1 (that is to say, kK = —1) and not
otherwise. Therefore if k # —1 we cannot run the compactness argument.

We now have a version P-H(k) of P-H for each k. Given that it is custom-
ary to use only the standard implementation of natural-number-of, (that
takes |z| to be [z]~, the equipollence class of x) we should consider what
the various P-H(k) look like once one reverts to usual practice. P-H(k)
is captured by a doctored version of the syntax for P-H where “relatively
large(x)” is replaced by “|z| > T*(min(z))”. It remains to be determined
whether the various P-H(k) for k& # —1 are all equivalent. That may take a
little while. For the moment we can at least establish the following, which
is a fairly straightforward application of work of Friederike Korner [3].

Theorem 4
For each concrete k, NF + P-H(k) is consistent relative to NF.

PRrROOF. — In [3] it is shown that it is consistent relative to NF (in fact
relative to any stratfied extension of NF) that there should be a Kérner
function, that is to say f : N — N such that (Vn € N)(n < f(Tn)).
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Now let f be such a Korner function and consider the analogue of P-H
that we can prove by replacing “relatively large” by ‘|z| > f(T(min(z)))’.
This allegation is stratified and can be proved by the usual compactness
argument. But observe that if |z| > f(T'(min(z))) then x is relatively large
in the old sense (because f(T'(min(z))) > min(z)), so we have proved the
original unstratified version of P-H.

All right, so all this proves is that the original unstratified version of P-H
is consistent relative to NF. What about the other versions, where we
claim the existence of monchromatic sets x which are relatively large in
the sense that |z| > f(T*(min(z)))? As it happens, the Kérner function
exhibited in [3] satisfies (Vn € N)(n < f(T%n)) for each concrete k > 1 and
thereby takes care of the remaining cases as well, at least where k > 0.
The Korner function achieves this effect because in the relevant model
there is ng such that (Vn > ng)(n < Tn). We define the Korner function
f to be An.(n + ng). If k is any concrete natural we have

f(TFn) = TEn+TF(T *ng)
> Th=ln + TF=1(TFng)

> n + T_kno
> n.

The second line follows from the first because the RHS, being bigger than
no, is < T(RHS) and therefore > T~ (RHS) — which is the RHS of line 2.
The third line follows from the second because RHS > T~ (RHS) implies
T~YRHS > T~2(RHS) by the usual isomorphism property of 7. And so
on.

For negative values of k£ we use a Kérner function obtained analogously in
a model containing ng such that (¥n > ng)(n > Tn); we define the Kérner
function f to be An.(n + ng) as before. a

Richard Kaye has pointed out to me that if one thinks of Paris-Harrington
as an allegation about the existence of monochromatic tuples not sets
then no stratification problem arises, since tuples of natural numbers are
naturally coded in a homogeneous way as natural numbers.
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Other versions of Paris-Harrington

The literature is full of variants of P-H where “relatively large” is replaced
by “|x| > g(min(x))” for various natural functions g : N — N. How do such
variants fare in the NF context? We would of course expect these P-HY to
show the same variety of strengths in the NF context as they do in their
native habitat. In the NF context there is the additional complication
that any such variant P-HY of Paris-Harrington multifurcates in the same
way the original (“P-H™”) did in Section 7. The question of whether or
not these are provable in NF or consistent relative to it can be approached
by means of Korner functions as in Section 7. It is a simple matter to
check that for any definable arithmetic function g : N — N there is an
Ehrenfeucht-Mostowski permutation model containing a Kérner function
f N — N satisfying (¥n € N)(n < f(g(n)).

8. Concluding Random Thoughts

This pantomime horse is of course work in progress. One glaring omission
from the forequarters is an exposition of the proof of independence of
P-H from PA, and the hindquarters lack the corresponding discussion of
how the independence is connected with the unstratified nature of P-H.
I suspect there are some quite enlightening things one could say about
that.

There are other details that merit attention. At present it seems to be an
open problem whether or not there can be in NF a type-lowering imple-
mentation of cardinal-of for all sets. The trick used to obtain a type-
lowering implementation of cardinal-of for finite sets will work also for
wellordered sets whose sizes are sufficiently small alephs. If NCI is finite
then NC is countable and therefore the size of a set of singletons® for con-
crete k as big as you please. So in those circumstances we would have,
for each concrete k, an implementation of cardinal-of making the type
difference between ‘|z|” and ‘@’ precisely equal to k. In contrast there
cannot be a type-lowering implementation of ordinal-of — because of
Burali-Forti.
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