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The theorem we know as Ramsey’s theorem—ω → (ω)nm—was just a
dry run for (∀n,m, k)(∃x)(x → (n)mk ) which in turn was a dry run
for (∀n,m, k)(∃x)(x→ (n)<m

k ) which was merely a lemma en route to
what he was really after. Ramsey’s real theorem is that there is a
method for deciding whether or not a ∀∗ sentence has arbitrarily large
finite models, and the stronger result alluded to in the title is obtained
from it by some elementary jiggery-pokery.1

1 Definitions

We fix a first-order language L with equality but without function letters.
These two points are more important here than they usually are, because
the result we are trying to prove—namely the decidability of the universal
fragment—is trivial for a language without equality or function letters but
impossible once one has both.

The variables of our first-order language are lower case Roman letters
with subscripts. Calligraphic font letters denote models and the correspond-
ing upper-case Roman letters the domain (“carrier set”) of that model. A
formula is true in a structure M iff all assignment functions satisfy it. An
assignment function for a model M = 〈M, . . .〉 ought to be a function send-
ing variables of the language to elements of M but for technical reasons it
is easier to take M-assignment functions to be functions taking subscripts
of variables as their arguments, and values in M (the carrier set of M).
Remember a formula is valid if it is true in all structures. Two formulæ are
logically equivalent if they are true in the same structures.

1Historical point: this was before Church proved the undecidability of the predicate
calculus. The question of the decidability of LPC in the air at that time.
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The Prenex Normal Form theorem says that every formula of L is
logically equivalent to one where all the quantifiers have been pulled to
the front and all atomic subformulæ are within the scope of all quantifiers.
By the prenex normal form theorem we may assume that our candidate
formula Φ has had all its quantifiers pulled to the front and its matrix put
into disjunctive normal form. (The matrix of a formula in prenex normal
form is the stuff after the quantifiers.) We can be sure that for any finite
length of quantifier prefix there can be only finitely many disjuncts that any
∀∗ sentence can contain. (This is because there are no function letters).

A universal sentence (∀∗-sentence, Π1-sentence etc. etc.) is one which,
once coerced into prenex normal Form, has no existential quantifiers.

A universal sentence in a language without function letters or equality
is satisfiable—if at all—in a universe with only one element. Say some-

thing about
function let-
ters making
life difficult.

2 Universal Sentences

Let us fix a universal sentence Φ, and suppose that the variables in Φ are ‘x’
with subscripts i for i < p. (‘p’ alludes to ‘Φ’.) We manœuvre Φ into prenex
normal form, with its matrix in disjunctive normal form. Let us follow
Ramsey in calling these disjuncts alternatives rather than the more generic
disjuncts (as they are customarily called nowadays) to remind ourselves that
it is elements of precisely this family of disjuncts that we have in mind. A
p-alternative—henceforth just an alternative—is a conjunction of atomics
and negatomics in which every atomic formula in the variables xi with i ≤ p
appears precisely once. The ∀∗ sentence Φ that we are considering has only
finitely many variables, and only finitely many predicate letters can appear
in it. So there are only finitely many conjunctions of atomics and negatomics
in the language of Φ. The set of disjuncts in the DNF of the matrix of Φ
is merely a subset of this set. We assume wlog that all these disjuncts
are maximal in the sense that each one contains every atomic formula as
a conjunct, either negated or negated. This ensures that the alternatives
of Φ are mutually exclusive and collectively exhaustive of all possibilities
represented by Φ.

It might help the reader orient his/herself to think about how many
alternatives there are. There is only one nontrivial language that is small
enough for us to do anything by hand, and that is the language with equality
and one binary relation. n variables give

(
n
2

)
equations and n2 things like

R(xi, xj) for a total of 2(n2)+n2
alternatives.
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2.1 Bad Alternatives

So an alternative is a state-of-affairs that is consistent from the point of view
of propositional logic. However, some alternatives—such as “x1 = x2∧x2 =
x3 ∧ x1 6= x3”—violate the elementary theory of equality. Discarding them
cuts the number of alternatives down to something more like Π(n)·2n2

where
Π(n) is the number of ways of partitioning an n-membered set.

Some violate principles which, despite being subtler, are nevertheless
still logical—such as substitutivity of identity. ‘F (x) ∧ ¬F (y) ∧ x = y’ is a
case in point.

Do we want to consider these bad formulæ to be alternatives? We cer-
tainly want to discard them! So we either tighten up our definition of al-
ternative so that such conjunctions of atomics and negatomics are not al-
ternatives, or we can allow them to be alternatives, but then weed out from
the PNF version of Φ any such bad alternatives that crept in during the
normalisation process.

So let us consider that done, one way or another, so that the matrix of
the PNF of Φ contains only sensible alternatives.

2.2 Orphans

There is a further simplification we can make, arising from the following
consideration. The symmetric group Sp of all permutation of the natural
numbers ≤ p (in other words the group of permutation of the variables in
Φ) has an obvious action on the matrix of Φ (the set of alternatives). If A is
an alternative and σ ∈ Sp then σ(A) is the result of rewriting the subscripts
of the variables in A in accordance with σ.2

An orphan is an alternative A of Φ such that, for some σ ∈ Sp, σ(A) is
not in Φ.

LEMMA 1 Φ is logically equivalent to (i.e., has the same models as) the
result of deleting all orphans from it.

Proof:

2There is an annoying subtlety here: Is there an order (lexicographic perhaps?) in
which we write the atomics and negatomics in A? Or do we think of A as a conjunction
of a set of atomics and negatomics instead of as a list? If the first, then the conjuncts
in σ(A) might be in the wrong order. So it might be best to think of alternatives in this
second way. We certainly don’t want to make the concept of alternative so fine that we
regard R(x, y) ∧ ¬R(y, x) as a different alternative from ¬R(y, x) ∧R(x, y). But in doing
this we are already making a point about linearity of notation.
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Let M |= Φ and suppose there is an assignment f which satisfies [the
disjunction of alternatives that is the matrix of] Φ, and that f does this
by satisfying an orphaned alternative A. Since A is an orphan, there is a
permutation σ ∈ Sp such that the alternative σ(A) is not in [the disjunction
of alternatives that is the matrix of] Φ. Then the assignment σ ◦ f will
satisfy σ(A). But then—since alternatives are mutually exclusive—σ ◦ f
cannot satisfy any alternative in [the disjunction of alternatives that is the
matrix of] Φ and therefore doesn’t satisfy Φ, so Φ is not true in M.

So we could rephrase lemma 1 as follows:

LEMMA 2 Every (universal closure of) a set of alternatives is logically
equivalent to (the universal closure of) the union of the orbits included in
it.

Notice that this works for universal sentences, but not for formulæ of
higher logical complexity in which different variables can be bound by quan-
tifiers of different flavour (∃ versus ∀.)

It could be said that the effect of the manipulations and simplifications
inflicted on Φ have so far had the effect merely of correcting the mistake
made by our syntax in requiring us—if we wish to think of a quantifier
prefix ∀x1 . . . ∀xn as one quantifier not many—as a quantifer over lists not
finite sets. We get into this situation because the tokens of symbols in a
formula are linearly ordered by position. It is noteworthy that skolemisation
involves deleting quantifier prefixes (on the assumption that naked variables
are universally quantified) and this act destroys the order information. It
shows that we never needed this information in the first place.

2.3 Conjunctions of Universal Formulæ

However there is another standard way of expressing universal sentences.
Each alternative A in Φ is a conjunction of atomics and negatomics, and
we can think of each alternative as a conjunction of two formulæ, both
themselves conjunctions. The first conjunct is the conjunction of all the
equations and inequations in Φ, and the second is the conjunction of all
the remaining atomics and negatomics. What conjunctions of equations
and inequations can possibly appear in alternatives in this way? Well, if
Φ is to have any models at all, then any logical possibility—like x1 = x2 ∧
x2 6= x3 . . .—must be a subformula of at least one alternative, otherwise no
assignment function f with f(1) 6= f(2) will ever satisfy Φ and Φ will not
be true in any model.
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There are Π(p) such logical possibilities, where Π(p) is the number of
partitions into nonempty pieces of a set of size p. This invites us to rephrase
Φ along the following lines:

“If you pick up x1, x2 . . . xp then either x1 = x2 ∧x1 6= . . ., in which case
you are in one of these alternatives, or x1 = x2∧x1 6= . . ., in which case you
are in one of these alternatives, or . . . ” with Π(p) cases to consider.

That is to say, we can rephrase Φ as a conjunction:∧
j≤Π(p)

(∀x1 . . . xp)(Cj → Ψ) (1)

where the Cj range over the Π(p) consistent conjunctions of equations and
inequations.

Notice that all the conjuncts in formula (1) are closed, so we can ma-
nipulate their variables independently. But that means we can now make a
further simplification, as follows. The formula

(∀x1x2x3)(x1 = x2 ∧ x2 6= x3 → F (x1, x2, x3))

is clearly logically equivalent to the formula

(∀y1y2)(y1 6= y2 → F (y1/x1, y1/x2, y2/x3))

(F (y1/x1, y1/x2, y2/x3) is of course the result of substituting ‘y1’ for ‘x1’,
‘y1’ for ‘x2’ and ‘y2’ for ‘x3’ in F .)

So we perform this simplification on all the conjuncts in formula (1)
simultaneously, thereby enabling us to express Φ more specifically as a con-
junction of expressions:

(∀y1 . . . yi)(
∧
j 6=k

yj 6= yk → Fi) (2)

one for each i ≤ p, with the following rather special features.

1. The Fi are all disjunctions of conjunctions of atomics and negatomics
from the non-logical vocabulary: all the equations and inequations
were hived off earlier. These conjunctions of atomics and negatomics
from the non-logical vocabulary are our new alternatives.

2. Lemma 1 tells us that we can remove orphans, so for each i we can
take Fi to be the disjunction of all the formulæ in a union of Si-orbits
of (new-style) alternatives.
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Ramsey writes out the set of formulæ whose generic representative is (2)
as a matrix: one row for each i. I shall retain this nomenclature of ‘rows’
for the conjuncts like formula 2.

DEFINITION 1 For a formula like that in 2 a form is an orbit of alter-
natives.

There is a certain amount of overloading/equivocation going on in that
sometimes a form is a set of formulæ and sometimes a disjunction of formulæ.

Suppose we have a form F that uses variables y1 . . . yk. For I ⊆ {1 . . . k}
we can delete from the alternatives in F all occurrences of yi for i ∈ I and all
the atomic subformulæ in which they appear. The result is something that is
very like a form, except that the set of subscripts of the variables that appear
in it might not be in an initial segment of IN. But this can be corrected by
relettering: simply collapse the variables: {y1, y4, y7} 7→ {y1, y2, y3}.

The form we obtain by doing this is a form that Ramsey speaks of as
involved in the form we first thought of. I can see no reason for this
involved3 terminology and I will say “F1 is a restriction of F2” in these
circumstances and write ‘F1 ≺ F2’. This relation is clearly reflexive and
transitive.

It matters because if we take a row of Φ, the kth for example, and delete
some variables from it we obtain an allegation about a smaller number of
variables, l, perhaps. This allegation had better not contradict the infor-
mation about l variables contained in the lth row of Φ! Another way of
putting it: a form with n variables in it in some sense contains a complete
description of what can happen to an n-tuple. This information contains
within it information about what can happen to n′-tuples for n′ < n. Thus a
form with n variables is in danger of overwriting a form with fewer variables.
This had better not happen!

We are now in a position to announce a partial result.

LEMMA 3 If n ≤ p then4 Φ has a model of size n iff Φ contains a form F
with n variables in it and contains every form F ′ ≺ F .

Proof:

L→ R Suppose M = 〈M, . . .〉 is an L-structure with |M | < p and is a model
for some universal sentence Φ. We will try to recover what information
we can about Φ given only this news.

3joke! Joke!!
4remember that p is the number of variables in Φ
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The first thing to notice is that, for k > n, we can infer nothing about
what might be in the kth row of Φ. This is because the kth row tells
us what is true of a tuple of k distinct things—and M does not contain
k distinct things. But this is all right, because we are looking for a
form with n variables in it not k > n variables. So Φ can have for its k
row anything we please—or equally not have a kth row at all for any
k > n.

Let f be an M-assignment function, a function sending the variables
‘y1’ . . . ‘yk’ (or, strictly speaking, their subscripts) to members of M .

From each f we will derive an alternative, Af , as follows. M comes
equipped with interpretations (graphs) of each of the predicate letters
appearing in Φ. If 〈f(i), f(j)〉 is in the M-interpretation of the two-
place predicate letter ‘R’ then we put the formula ‘R(yi, yj)’ into Af ;
if 〈f(i), f(j)〉 is not in the M-interpretation of the predicate letter
‘R’ then we put the formula ‘¬R(yi, yj)’ into Af . Clearly we have
Aσ◦f = σ(Af ), so whenever we put an alternative A into Φ we also
put in every alternative in the same orbit (form) as A.

What happens if f(i) = f(j)? By analogy with the foregoing we
would want to put ‘yi = yj ’ into Af . But alternatives do not contain
equations, so this can’t happen. We sublimate the urge to write down
‘yi = yj ’ by instead replacing all occurrences of ‘yj ’ by ‘yi’ (assuming
i < j). That way we get for Af an alternative from a higher row, one
with fewer variables in it.

(There is a slight difficulty here. What are we to do if, say, p = 4
and our assignment function f sends both 1 and 2 to m ∈ M and
sends both 3 and 4 to m′ ∈ M? Clearly the message f has for us
will concern row 2 rather than row 4. What is this message? To read
it, we must “squash” ‘y1’ and ‘y2’ to ‘y1’ and squash ‘y3’ and ‘y4’ to
‘y2’, so that if 〈m,m′〉 belongs to the M-interpretation of R then we
put ‘R(y1, y2)’ into Af . Q: Why not squash ‘y1’ and ‘y2’ to ‘y2’ and
‘y2’ and ‘y4’ to ‘y1’ instead? A: it doesn’t make any difference! The
result of squashing the variables in the second way will be put in by
the assignment function f ′ that sends 1 and 2 to m′ ∈ M and sends
3 and 4 to m ∈ M? The kth row is a union of forms (orbits) and all
this comes out in the wash.)

That is to say, the (ordinal number of) the row of formula (2) that
Af belongs to will depend on how many different values f takes. Let
|rn(f)| be the number of distinct values taken by f . Evidently Af will
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belong to row |rn(f)|.

R→ L Suppose Φ contains such a form—F , say—with n variables. We build
an n-sized model M = 〈M, . . .〉 of Φ. The kth rows, with k > n, all
say “Whenever I pick up k distinct things, the following happens. . . ”
and so are vacuously true in any model with fewer than k things, and
we don’t have to worry about them.

Enumerate M somehow as {m1 . . .mn} (it doesn’t matter how), and
pick one alternative A from F (it doesn’t matter which). Then consider
the assignment λi.mi. We can now read off, from A, the interpretations
of the predicate letters of M. IfA says: R(y1, y3), then we put 〈m1,m3〉
into the M-interpretation of R. This gives a complete description of
the interpretations of all the predicate letters for our model M.

So why do we need to worry about the restrictions of F to earlier rows?
The point is that, for Φ to be true in M, it has to be satisfied by all
assignments, including those that are not 1-1. Accordingly we have to
ensure that the information given by earlier rows does not conflict, and
that is why we need all the restrictions of F to be present in earlier
rows.

Notice that the model M we have constructed satisfies not only Φ but
also the formula obtained from Φ by deleting all forms other than the
one we chose (and of course its restrictions).

Say some-
thing about
deleting
from Φ the
things not
appearing
in the cho-
sen form.
What is the
logical sta-
tus of this
operation?
They prob-
ably have
the same
spectrum. . .

But what happens if there are more than p elements of our candidate
model? Then we have some more work to do. First some more titivating.
We notice that, the way Φ is expressed at the moment, a lot of the predicate
letters can appear with the same variable in many positions. This makes
a mess. We clear this up by inventing new predicate letters in a system-
atic way, so that—for example—instead of writing ‘ψ(y1, y1, y2)’ we write
‘ψ1=2(y1, y2)’ where ‘ψ1=2’ is a new predicate letter. Consider this done.

Fix an alternative A (and remember a form is a disjunction of alterna-
tives). Suppose A belongs to the ith row of the presentation of Φ in the style
of formula 2 so that A has i free variables. Now let ψ be some (possibly
newly coined) predicate letter with j argument places (j ≤ i) which appears
in A. A must, for each choice ~z of j variables from y1 . . . yi, contain either
ψ(~z) or ¬ψ(~z). Now x1 . . . xj give us j! tuples of length j and A must make
up its mind whether or not ψ holds for each of the j! ordered j-tuples. We
are interested in the odd cases where this enables us to ascertain what A
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thinks happens to the remaining triples. Let’s fix some values for ease of
illustration. Suppose j = 3 and i = 24, so that ψ has three argument places
and there are 24 variables to be dealt with. There are

(
24
3

)
·3! ways of fitting

these variables into ψ and, for each of these, A must contain either it or its
negation.

Given any of the
(

24
3

)
· 3! triples there is a canonical bijection between

that triple and the triple {1, 2, 3}, since they are isomorphic as substructures
of the linear order 〈IN,≤〉. Via these canonical bijections, any ordered triple
will be said to correspond to an ordered triple whose entries are 1, 2 or 3.
Thus 〈5, 7, 11〉 and 〈2, 3, 17〉 both correspond to 〈1, 2, 3〉; 〈4, 7, 2〉 corresponds
to 〈2, 3, 1〉. In the case we are interested in, if ~z and ~w are two ordered triples
that correspond to each other, then A thinks that ψ(~z) iff ψ(~w).

Think of A as an authority on the truth value of ψ applied to triples of
variables. We are interested in the case where A cares only about the order
(increasing, decreasing, zig-zag . . . ) of the subscripts. When this happens,
Ramsey says that A is serial in ψ. If A is “serial” in all ψ then it is just
plain serial. A form is serial iff one of its alternatives is serial. (Check
for yourself: a form cannot have more than one serial alternative). Why
‘serial’? Well, he’s got to call it something, and the word ‘serial’ was used
in those days for wellorderings, and he may have felt there was a connection
of ideas.

We are now ready for some more definitions.

DEFINITION 2 I = 〈I,≤I〉 is a set of indiscernibles (or s.o.i) for L
iff for all Φ ∈ L, if Φ is a formula, and n is the number of free variables in
it then for all distinct n-tuples ~x and ~y from I taken in increasing order
we have Φ(~x)←→ Φ(~y).

The idea of a set of indiscernibles first appears in the Ramsey paper
under discussion, but the definition is not given explicitly.

It is standard in modern set theory that theorems like (∀n,m, k)(∃x)(x→
(n)mk ) imply the existence of sets of indiscernibles. Usually we are interested
in infinite languages, and then we use the infinite version of Ramsey’s theo-
rem to show that infinite sets have infinite subsets that are s.o.i.s. Indeed it
is usually understood that the L in the definition of s.o.i. is the full recur-
sive datatype of all expressions that can be built up from a set of predicate
letters and functions. However, in the case Ramsey is interested in, L is
simply the finite set of predicate letters itself.

Let us illustrate with a simple case. Suppose we want an s.o.i. for the
language containing only one ternary predicate letter F . Fix a total order of
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the universe, <. Partition the set of unordered triples {x, y, z} into 26 pieces
depending on whether or not F holds of the various six ordered triples one
can make from this unordered triple. By Ramsey’s theorem if the Universe
is large enough there will be a large monochromatic set. A monochromatic
set is of course a set of indiscernibles.

The significance of this notion in the present context is that if A is a
serial alternative and f is an assignment satisfying that serial alternative,
then f enumerates a set of indiscernibles for the atomic formulæ of L.

THEOREM 1
There is a finite number mL such that, for every universal sentence Φ,5

1. Either Φ contains a serial form F and all forms F ′ ≺ F , in which case
Φ has models of all sizes greater than mL; or

2. Φ contains no such form, in which case it has only finitely many mod-
els.

Proof:

1. Suppose Φ contains a serial form F and all its restrictions. (In these
circumstances we know already from lemma 3 that Φ has a model of
size n, because Φ contains a form F and all its restrictions—whether
that form be serial or not).

This time we are given the extra information that the postulated form
F is serial, but we are now required to furnish arbitrarily large mod-
els. Let M be a set of size n > p and ask ourselves whether there
is a way of finding subsets of Mn that interpret the predicate letters
of LΦ (the set of predicate letters occurring in Φ) in such a way that
Φ comes out true in the model M expanded from M by adjoining
those interpretations of the predicate letters. We start by fixing ≤M ,
a wellordering of M . Let A be the serial alternative in F . Let us go
back to our special case from earlier, where ψ( ) was a ternary rela-
tion. We can define the M-interpretation of ψ (a subset of M3) as
follows. We first fix a 1-1 assignment function f . We want to know
whether to put 〈m,m′,m′′〉 into the M-interpretation of ψ or not.
m, m′′ and m′′′ are ordered somehow by ≤M . If m ≤M m′ ≤M m′′

then we put 〈m,m′,m′′〉 into the M-interpretation of ψ iff A con-
tains the conjunct ψ(yf−1(m), yf−1(m′), yf−1(m′′)). If m′ ≤M m ≤M

5If L has a finite alphabet then mL depends only on L. Otherwise mL depends on the
predicate letters appearing in Φ.
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m′′ then we put 〈m′,m,m′′〉 into the M-interpretation of ψ iff A
contains the conjunct ψ(yf−1(m), yf−1(m′), yf−1(m′′)), . . . and so on, so
that—in order to determine whether or not we want some given tuple
〈m,m′,m′′〉 to belong to the M-interpretation of ψ—we look at the
vector of variables drawn from the set {‘y1’, ‘y2’, ‘y3’} to which the tu-
ple 〈yf−1(m), yf−1(m′), yf−1(m′′)〉 corresponds to see whether or not A
contains ‘ψ’ with that variable-vector inserted.

Since A is serial in all the predicate letters, this gives us an interpre-
tation for all the predicate letters. We can think of the concept of
‘serial’ as being so designed that if A is serial this process never gives
conflicting advice on whether or not to put any given tuple into the
M-interpretation of any particular predicate.

This gives us a model M |= Φ. In fact the way we have constructed this
interpretation tells us a little more. Every tuple from M will satisfy
something equivalent to the alternative A, so it satisfies the cut-down
version of Φ that we alluded to at the end of the proof of leemma 3. This con-

struction
of M is
parametrised
by ≤M and
A, so if we
want to
study this
in more
detail later
it might
be an idea
to adopt
a notation
that makes
this clear.

2. Assume there is a way of imposing interpretations on a set M of m
elements to get a model M |= Φ. We must show that Φ contains a
serial form F and all forms ≺ F .

The idea is to show that if m is big enough then if M |= Φ then there is
at least one p-tuple fromM such that the true alternative for that tuple
is a serial one. This is where we will need the finite version of Ramsey’s
theorem. Let M |= Φ be so big that by the finite version of Ramsey’s
theorem it has a p-sized set of indiscernibles ~m = {m1 . . .mp} for the
set of atomic formulæ. |M | is of course the mL of the statement of
theorem 1.

M |= Φ, so every M-assignment function satisfies Φ. In particular, Φ
will be satisfied by the rather special assignment function f = λi.mi

that sends the ith variable to the ith element of the set of indis-
cernibles. Like any ordinary assignment function, if f satisfies Φ
at all it does so in virtue of satisfying a unique alternative, which
we may as well call ‘Af ’ as before. The fact that the range of f
is a set of indiscernibles is immensely informative. If Af contains
ψ(y1, y3, y5) (for example) this is because 〈yf(1), yf(3), yf(5)〉 belongs
to the M-interpretation of ψ. But 〈f(1), f(3), f(5)〉 = 〈m1,m3,m5〉
(by our careful choice of assignment f !) and—because ~m is a set of
indiscernibles—〈ym1 , ym3 , ym5〉 belongs to the M-interpretation of ψ iff
〈ym2 , ym3 , ym6〉 belongs to the M-interpretation of ψ iff . . . and so on
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for all other increasing triples. So Af contains ψ(y2, y3, y6) and so on,
which means that it is serial in ψ. Indeed—since ψ was arbitrary—Af
is serial in everything else as well, making it serial tout court. The
form to which Af belongs is now the serial form whose coming was
foretold.

DEFINITION 3 The spectrum of a sentence ψ is the set {n ∈ IN : ψ has
a model of size n}.

COROLLARY 1 The spectrum of any universal sentence is finite or cofi-
nite.

3 Existential-Universal Sentences

In the last two pages of the paper Ramsey “sketches” (his word) a way of
extending this result to ∃∗∀∗-sentences.

I shall follow the lead given by a witticism of Quine, who used to write
existential-universal sentences in the style (∃~x)(∀~y)(. . .); the point being:
xistential and youniversal!

Let us assume that our ∃∗∀∗-sentence (∃x1 . . . xn)(∀y1 . . . yk)Ψ is in a
kind of PNF where the matrix is in conjunctive normal form. This enables
us to import the universal quantifiers past the conjunctions so we can express
it in the form:

(∃~x)([
∨
i∈I

Ψi(~x)] ∧ (∀~y)(Θ(~x, ~y)))

where each Ψi is a conjunction of atomics and negatomics concerning ~x
only, and Θ is quantifier-free.

Next we note that existential quantification commutes with disjunction
to turn this into a disjunction of ∃∗∀∗-sentences of this restricted kind. Then,
by a device of relettering like that for which we used the operation new

defined earlier, we can assume that in all the disjuncts all the x variables
are deemed to denote distinct things. Finally, beco’s of equivalences like that
between (∀x)((x = a∧A(x))∨ (x 6= a∧B(x))) and (A(a)∧ (∀x 6= a)(B(x))
we may assume that in all the disjuncts—which by now look like

(∃~x)(Ψ(~x) ∧ (∀~y)(Θ(~x, ~y)))
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the xs are all distinct from all the ys and from each other, and that Θ
contains no atomic subformulæ featuring x variables only.

The intention is to prove that sentences of this kind obey theorem 1, for
since any ∃∗∀∗ sentence is a disjunction of finitely many of these sentences,
that will be enough to ensure that all ∃∗∀∗ sentences do. (If ψ is a disjunction
of finitely many sentences each of which has finite or cofinite spectrum then
so does ψ)

If a sentence of this new kind fails to be satisfiable we may assume
that it is not on account of Ψ (which is after all a conjunction of atomics
and negatomics). Next we banish all the existential quantifiers and replace
the x variables by constants. Then we introduce a new suite of predicate
letters which we will use to replace occurrences of old predicates which have
constants in any of their argument places. Thus an old binary predicate
letter ‘F ’ occurring in contexts like ‘F (a, y)’ and ‘F (y, a)’ will give rise to new
predicate letters in contexts like ‘Fa1(y)’ and ‘Fa2(y)’ and for each constant
a. Finally atomic formulæ mentioning only ‘x’ variables get replaced by a
propositional constant.

But what we now have is a ∀∗-formula, and we know how to test these
for satisfiability!
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