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Introduction

NF is a odd system, but it is not odd in the way people think. The oddness lies
not in the apparently purely syntactic nature of the insight that underlies it, for
that insight is less perverse and less syntactic than one might suppose. NF is not
so much oddly conceived as oddly fragile. It is very striking that every known
weakening of it results in a system with a relatively simple consistency proof,
and on the other hand almost any weakening of the syntactic chains that Keep
Chaos At Bay is swiftly punished with inconsistency. (This is not to say that
there are no natural strengthenings of NF that appear to be consistent: there
are. The point is that these strengthenings do not arise from any relaxation of
syntactic constraints in the comprehension scheme.) If stratification works at
all—and it might—then it is very finely balanced on a knife edge.

Mathematicians on their first exposure to NF often spontaneously wonder
if it might be safe to take some risks with the syntactic constraint they see
exploited in NF, perhaps because—it being less natural at first blush than it
becomes on mature aquaintance—one is initially more inclined to question its
value as a source of axioms than one is to question the value of the cumulative
hierarchy as such a source.

The authors of this little survey thought that it might be useful to collect in
one place the various liberties that people have from time thought about taking
with the syntactic restraints that seem to keep NF safe. Most of them have
been shown to fail, and although most of these failures can be made to happen
fairly quickly if one knows how to overload the machinery, beginners—even
mature beginners—cannot be expected to find these counterexamples swiftly.
Accordingly there is merit to be gained—and time and effort to be saved—by
collecting them all into one place.

Thanks are to Randall Holmes and Anuj Dawar for contributions and expla-
nations.

Definitions and Summary

We discuss the obvious relaxations of the rules, and discuss in some detail a
well-motivated and attractive but ultimately doomed idea of the second author
that there might somehow be a kind of inhomogeneous equality relation.

One aperçu we will be making repeated use of is the fact that no set theory
can survive having the collection of all genuine (seen-from-outside) wellorder-
ings as a set. In ZF style theories all such “universal” collections are easily
shown to be proper classes anyway, so there is no particular significance to the
class of genuine wellorderings above and beyond the class of common-or-garden
wellorderings. However in NF the class of common-or-garden wellorderings is
a set; indeed in NF the extension of any stratified predicate is a set, so any
relaxation of the syntactic constraints that would enable us to give a stratified
definition of genuine wellordering will be fatal. It is striking how many of these
proofs turn on this one feature. Perhaps this hides a moral. If it does, then
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it is a moral that was first pointed in 1940 by Rosser, who noticed that if one
relaxes the device of stratification in NF-with-classes to allow bound class vari-
ables to appear in stratified formulæ in set existence axioms then the collection
of genuine wellorderings is a set.

Before we embark on the details a word is in order on the proof sketches
to be found in the body of the paper. We are considering a programme of
incorporating stratification into logics which extend ordinary first-order logic
and claiming that this gives rise to inconsistency. Clearly proofs of some sort
have to be provided: one cannot just say “this enables one to define genuine
wellorderings and thus prove the Burali-Forti paradox”. However, not all of
these logics have satisfactory proof systems available in which one could provide
rigorous proof objects. The compromise we have reached, in order not to try
the readers’ or our own patience unduly, is to provide proof sketches which
should blossom into proper proofs when placed in the context of a proper proof
system. In some cases we have felt obliged to supply more than one proof to
allay suspicions.

The usual definition of ‘stratified’ is developed as follows.
Let φ be a formula on the language L : (∈,=) of set theory. A stratification

of φ is a map s from the set of variables of φ to the integers such that if x and
y are two variables of φ and x = y is a subformula of φ, then s(x) = s(y) and
if x ∈ y is a subformula of φ, then s(x) + 1 = s(y). A formula φ is stratified if
there is a stratification of φ. If φ is a formula and if there is a map s such as
before but defined only on the bound variables of φ, the formula is said to be
weakly stratified. We still call such an s a stratification but we precise that it
is defined on the bound variables of φ.

An axiom of comprehension is an axiom saying that for all tuples ~x and any
weakly stratified φ the collection {y : φ(y, ~x)} is a set.

1 An apercu of Holmes

Tn is the natural number |{{y} : y ∈ x}|,where x ∈ n, with the effect that
if σ is a stratification then σ(‘Tn’) = σ(‘n’) + 1. The result is that ‘n = Tn’
is unstratified and the assertion ‘(∀n ∈ IN)(n = Tn)’ cannot be proved by
induction and would have to be added if we use to exploit it. This is Rosser’s
Axiom of Counting. NF + the Axiom of Counting is NFC

Randall Holmes has remarked to us that although one usually thinks of the
Axiom of Counting as a flagrantly unstratified—albeit natural—assertion, one
can in fact relax the definition of ‘stratified’ in such a way that it becomes
stratified, with the effect that if one expresses NF as before—extensionality
plus weakly stratified comprehension—one obtains precisely NFC. The idea is
as follows. In any formula φ a natural number variable is a bound variable,
‘x’ say, whose binding quantifier is restricted to the Natural Numbers: ∀x ∈ IN
or ∃x ∈ IN. If φ can be turned into a stratified formula by prefixing ‘T ’s to
some occurrences of some of the number variables in φ then a stratification of
φ in the new relaxed sense is a stratification defined on the bound variables of
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φ other than the natural number variables.
Thus although the axiom of counting does not arise from a relaxation of

the stratification discipline it can be (mis)represented as arising in that way.
Holmes makes the point that the same move can be used to assert that any
other definable set is strongly cantorian.

2 The Burali-Forti Paradox in the First Edition
of Quine’s ML

In [4] Quine thought to extend NF the way ZF is extended to obtain NGB,
namely by addition of proper classes. In the ZF case this is a useful manœuvre,
since it enables one to replace an infinite axiom scheme (replacement) by finitely
many axioms of class existence and the single axiom “The image of a set in a
function is a class”.

In NF there is no infinite scheme waiting to be finitised in this way (the set
existence scheme of NF is finitisable even without the use of classes) but there
is no harm in adding classes: none, that is, if we add them properly. In the
first edition of [4] the set existence scheme of NF is modified to allow bound
class variables into instances of the comprehension scheme, but the stratification
constraint remains. This means that as well as being able to define common-
or-garden wellorders (as usual) as total orders all of whose subsets have least
members, one is also able to define wellorderings-seen-from-outside as total or-
ders all of whose subclasses have least members. With hindsight, one is surprised
at how long it took for people to realise what had gone wrong. It is at least in
part by reflection on this little episode that the authors were led to the conclu-
sion that the parallel dangers in other relaxations of the stratification discipline
might be as initially mysterious as that one was, and that by spelling them out
we might be doing a service.

3 Cumulative stratification

Suppose we were to require of a stratification only that if there is a subformula
‘x ∈ y’ then the type of ‘y’ must be greater than that of ‘x’, and doesn’t have
to be greater by precisely one? Then

(∃y2)(∀z0)((z0 ∈ x1 ←→ z0 ∈ y2) ∧ x1 6∈ y2)

is stratified in this new weak sense, but says x 6∈ x. This would give us Russell’s
paradox.

4 Typing mod n

In the theory of Types Ambn is the scheme that says that types repeat them-
selves every n applications of power set. The ambiguity scheme is just Amb1.
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We know that when m|n then Ambn ⊆ Ambm. Now the usual apparatus with
type shifting automorphisms and general model-theoretic nonsense will accept
a model of Ambn and return a “circular” model of type theory. One in which,
for every natural number k, type k + n is just the same as type k. Now what
holds in such models, if there are any? AC fails, as we know that Ambn refutes
choice, but there is no reason to suppose that this theory is inconsistent—if we
are careful.

One might think that this is a model for a kind of typed set theory where the
types are integers mod n. That is to say every variable has a type subscript that
is an integer mod n and whenever ‘xi ∈ yj ’ occurs in a formula then j = i + 1
(mod n). The axioms are are extensionality and comprehension for well-typed
formulæ.

However, if this were the case, one would be able to form, at any type k, the
set Ak = {yk : ¬(∃xk+1, xk+2 . . . xk−1)(yk ∈ xk+1 ∈ . . . xk−1 ∈ yk)}, namely the
set of things at level k that do not belong to an n-cycle. This of course gives us
a version of the standard (if obscure) n-ary version of Russell’s paradox. The
feature peculiar to this typed setting is that Ak has to exist at each type k.
Then we reason as follows: Ak cannot belong to an n-cycle, for if it did, one
of its members would belong to an n-cycle, which they don’t. So, for all k,
Ak ∈ Ak+1. So the Ak form an n-cycle. Contradiction.

This is not to say that there is no consistent typed set theory of this kind.
What it means is that the notion of typing it uses is more restrictive than the
one we have just considered, and is the same as the notion of typing in negative
type theory.

If we think about the case k = 1 then it becomes obvious: every set-theoretic
formula is well-typed if our types are allowed to be integers mod 1!

5 Infinitary languages

5.1 Lω1,ω1

There is a stratified Lω1,ω1 formula

(∀x0 . . .∀xn . . .)(¬(
∧

n∈IN

xn+1 ∈ xn))

that says that x0 is wellfounded. If the collection of wellfounded sets is a set
then we have Mirimanoff’s paradox.

5.1.1 Formulæ of Lω1,ω1 which use only finitely many types

In this language we can still define genuine wellorderings.

(∀x0 . . .∀xn . . .)(¬(
∧

n∈IN

xn+1 < xn))
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5.2 Lω1ω

Consider {TnΩ : n ∈ IN}. This collection has a stratified definition in Lω1ω.
But then it is a set of ordinals with no least member.

5.2.1 Formulæ of Lω1,ω which use only finitely many types

The first thing to notice is that the previous section’s example, {TnΩ : n ∈ IN},
cannot be used in this case, since it uses infinitely many types. At this stage we
know of no proof that this liberalisation results in an inconsistency. However it
does give us a strong system.

The alert reader might expect that in Lω1,ω one might be able to exploit the
infinite family of approximants of [1] to branching quantifier formulæ and ob-
tain thereby any contradiction obtaining by exploiting the branching-quantifier
language. However, the contradictions obtained thereby all rely on our being
able to define genuine wellorderings. Since there doesn’t seem to be any way
of exploiting the set-theoretic machinery here available, one returns to the fact
that wellordering cannot be defined in Lω1,ω and that therefore one should not
expect this relaxation to fail—at least not on those grounds alone.

We will prove that the models of NF + comprehension for stratified formulæ
of the language Lω1,ω using only finitely many types are exactly the models
for which the set IN (the internal natural numbers) and P(IN) (the powerset
of the natural numbers) are the real external ones. We assume the following
comprehension scheme: For any formula ϕ of the language Lω1,ω, using only
finitely many types, we say that:

(∀a1 . . .∀an)(∃u)(∀t) (t ∈ u←→ ϕ)

where the free variables of ϕ are among a1, . . . , an. Notice that we consider
only a finite number of a1, . . . , an; without this requirement, it would be easy to
show that {Ω, TΩ . . . TnΩ . . .} can be defined with two types and infinitely many
parameters. It is easy to prove that the condition is necessary; we will prove that
the condition is sufficient. The idea will be to give a truth definition for formulæ
of fixed types and to use this truth definition to express arbitrary formulæ of the
language Lω1,ω as finite usual formulæ. We will need our hypothesis in order to
represent formulæ of Lω1,ω that use only finitely many types inside the theory.

Let n and t1, . . . , tn+1 be fixed concrete natural numbers. In our proof,
we will use the notion of an n-ary-function f(x1, . . . , xn), for which the formula
f(x1, . . . xn) = y is stratified by a function s such that s(x1) = t1, . . . , s(xn) = tn
and s(y) = tn+1. It is clear that such functions can be defined in NF.

Using the fact that the set of natural numbers and the powerset of the
set of natural numbers are the real ones, one can represent a formula ϕ
by an element pϕq of our model. Let n, t1, . . . , tn be fixed natural num-
bers, We will consider an (n + 1)-ary-function Tt1,...,tn , for which the formula
Tt1,...,tn

(p, a1, . . . , an) = y is stratified by a function s for which s(p) = 0,
s(a1) = t1, . . . , s(an) = tn and having the following property. For a formula
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ϕ(a1, . . . , an), whose free variables are among a1, . . . , an and stratified by a
function s such that s(a1) = t1, . . . , s(an) = tn, the following holds:

Tt1,...,tn
(pϕq, a1, . . . , an) = 1 iff ϕ(a1, . . . , an)

Notice that the formula ϕ may have fewer than n free variables since it is always
possible to add dummy variables. The function Tt1,...,tn

is defined by induction
in the usual way. Clearly Tt1,...,tn

is defined by a finite stratified formula. The
only thing that we have to check is that this definition is stratified: this is why
we have had to fix t1, . . . , tn.

With these functions Tt1,...,tn
, it is possible to show that our model satisfies

the comprehension scheme for formulæ of Lω1,ω, by replacing each formula by
a finite formula. Indeed, consider a formula ϕ whose free variables are among
a1, . . . , an and stratified by a function s with s(a1) = t1, . . . , s(an) = tn; we
have

(∀a1 . . .∀an)(∃u)(∀t) (t ∈ u←→ ϕ)

iff

(∀a1 . . .∀an)(∃u)(∀t) (t ∈ u←→ Tt1,...,tn
(pϕq, a1, . . . , an) = 1)

6 Branching quantifiers

Allowing the incorporation of branching quantifiers into stratified formulæ will
lead to Burali-Forti. The proof is hard. In fact—given the cute and easily
established fact which we are about to show—it is surprisingly hard.

It is standard that the following formula says that A and B are the same
size (

∀x ∈ A ∃y ∈ B
∀y′ ∈ B ∃x′ ∈ A

)
(y = y′ ←→ x = x′) (1)

Let us write this as A ∼ B. Its significance for us is that we have immediately
that A ∼ ι“A (the set of singletons of A). Surely, one thinks, a proof that every
set is cantorian should be just round the corner, and with it a proof of Cantor’s
paradox.

Sadly it seems not. The idea is good, but one has to try this machinery with
ordinals not cardinals. After all, if we are in a countable model, then all infinite
sets of the model are the same size seen from outside. But not all wellorderings
are the same length!

If 〈A,≤A〉 is a totally ordered set then(
∀n ∈ IN ∃x ∈ A
∀m ∈ IN ∃y ∈ A

)
(n < m←→ y <A x) (2)

is a stratified formula which says that <A has a descending ω-sequence (seen
from outside). Indeed, we easily see that, in formula 2, we have y = x if we
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choose n = m (for if n = m, x 6< y and y 6< x). From this we infer that there is
an external function x 7→ xn from N to A such that xn < xm whenever n < m.

Henceforth let 〈A,≤A〉 be an internal wellordering. We will show that it is
a genuine (external) wellordering as well.

∀n ∈ IN ∃x ∈ A
∀m ∈ IN ∃y ∈ A
∀n′ ∈ IN ∃x′ ∈ A
∀m′ ∈ IN ∃y′ ∈ A

 ∧  (n < m←→ y <A x)
(n′ < m′ ←→ y′ <A x′)
(m+ 1 = m′ → y′ = y)

(3)

Expression (3) has a quantifier prefix of four rows. Rows three and four
say that there is a descending ω-chain, and that it is the tail of the descending
ω-chain given by rows one and two. Clearly (3) follows from (2)

Now let us assume that 〈A,≤A〉 was an internal wellordering but not an
external wellordering, and let a be the <A-minimal element of A such that(

∀n ∈ IN ∃x ∈ A|a
∀m ∈ IN ∃y ∈ A|a

)
(n < m←→ y <A x) (4)

where A|a is {u ∈ A : u ≤ a}. Such an a exists because (4) is stratified. But
then we have

∀n ∈ IN ∃x ∈ A|a
∀m ∈ IN ∃y ∈ A|a
∀n′ ∈ IN ∃x′ ∈ A|a
∀m′ ∈ IN ∃y′ ∈ A|a

 ∧  (n < m←→ y <A x)
(n′ < m′ ←→ y′ <A x′)
(m+ 1 = m′ → y′ = y)

(5)

If we now instantiate ‘n’ to 1 in (5) we see that x must be a, by minimality
of a. But then rows three and four of the quantifier prefix tell us there is a de-
scending ω-chain consisting entirely of things below a, contradicting minimality
of a.

6.1 Another proof

We will first prove that if 〈A,≤A〉 and 〈B,≤B〉 are two (internal) well-orderings
then there can be at most one external isomorphism between them. Our point
of departure is formula 6 which says there is an external isomorphism between
〈A,≤A〉 and 〈B,≤B〉.(

∀x ∈ A ∃y ∈ B
∀y′ ∈ B ∃x′ ∈ A

)
(x ≤A x′ ←→ y ≤B y′) (6)

This gives rise to
∀x1 ∈ A. ∃y1 ∈ B
∀y′1 ∈ B. ∃x′1 ∈ A
∀x2 ∈ A. ∃y2 ∈ B
∀y′2 ∈ B. ∃x′2 ∈ A

 ∧  (x1 ≤A x′1 ↔ y1 ≤B y′1)
(x2 ≤A x′2 ↔ y2 ≤B y′2)
(x1 = x2 = u→ y1 6= y2)

(7)
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(7) is a stratified formula, with ‘u’ free, that says that there are two external
isomorphisms between 〈A,≤A〉 and 〈B,≤B〉 that differ on u. Since it is strati-
fied, and 〈A,≤A〉 is a wellordering, the set of u in A satisfying (7) will have a
least member. Notice that without loss of generality we could have replaced the
last line by by ‘x1 = x2 = u→ (y1 <B y2)’.

The next formula needs some explanation! Like (7) it is a stratified formula,
with ‘u’ free, and it says that there are two external isomorphisms between
〈A,≤A〉 and 〈B,≤B〉 that differ on u, but agree below u. The reader will notice
that lines four to eight of the quantifier prefix are duplicates of lines one-to-
four of the prefix (and lines three-and-four of the matrix analogously duplicate
lines one-and-two). The duplicated lines are copied bodily from formula (7),
and the duplicated variables are upper-case copies of the lower-case originals.
This duplication is necessary because the branching-quantifier language affords
us no variables (as it might be ‘F ’ and ‘G’) to range over the second order
objects captured by the branching quantifiers which would enable us to say
‘F = G’. We have to say—twice—that there are two external isomorphisms,
and by writing down equations between the old variables and their duplicates
we say that the two isomorphisms announced second are the same as the two
isomorphisms announced first (this is what lines five and six are doing). Finally
we use the first announcements to say that the two isomorphisms differ at u and
use the second to say that they agree below u.

∀x1 ∈ A. ∃y1 ∈ B
∀y′1 ∈ B. ∃x′1 ∈ A
∀x2 ∈ A. ∃y2 ∈ B
∀y′2 ∈ B. ∃x′2 ∈ A
∀X1 ∈ A. ∃Y1 ∈ B
∀Y ′

1 ∈ B. ∃X ′
1 ∈ A

∀X2 ∈ A. ∃Y2 ∈ B
∀Y ′

2 ∈ B. ∃X ′
2 ∈ A


∧



(x1 ≤A x′1 ↔ y1 ≤B y′1)
(x2 ≤A x′2 ↔ y2 ≤B y′2)
(X1 ≤A X ′

1 ↔ Y1 ≤B Y ′
1)

(X2 ≤A X ′
2 ↔ Y2 ≤B Y ′

2)
(x1 = X1 ↔ y1 = Y1)
(x2 = X2 ↔ y2 = Y2)
(x1 = x2 = u→ (y1 <B y2)
(X1 = X2 <A u→ Y1 = Y2)

(8)

Let us instantiate ‘u’ for the lower-case variables in (8) ranging over members
of A. This gives

∃y1 ∈ B
∀y′1 ∈ B. ∃x′1 ∈ A
∃y2 ∈ B
∀y′2 ∈ B. ∃x′2 ∈ A
∀X1 ∈ A. ∃Y1 ∈ B
∀Y ′

1 ∈ B. ∃X ′
1 ∈ A

∀X2 ∈ A. ∃Y2 ∈ B
∀Y ′

2 ∈ B. ∃X ′
2 ∈ A


∧



(u ≤A x′1 ↔ y1 ≤B y′1)
(u ≤A x′2 ↔ y2 ≤B y′2)
(X1 ≤A X ′

1 ↔ Y1 ≤B Y ′
1)

(X2 ≤A X ′
2 ↔ Y2 ≤B Y ′

2)
(u = X1 ↔ y1 = Y1)
(u = X2 ↔ y2 = Y2)
(u = u = u→ (y1 <B y2)
(X1 = X2 <A u→ Y1 = Y2)

(9)

This simplifies to
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

∃y1 ∈ B
∀y′1 ∈ B. ∃x′1 ∈ A
∃y2 ∈ B
∀y′2 ∈ B. ∃x′2 ∈ A
∀X1 ∈ A. ∃Y1 ∈ B
∀Y ′

1 ∈ B. ∃X ′
1 ∈ A

∀X2 ∈ A. ∃Y2 ∈ B
∀Y ′

2 ∈ B. ∃X ′
2 ∈ A


∧



(u ≤A x′1 ↔ y1 ≤B y′1)
(u ≤A x′2 ↔ y2 ≤B y′2)
(X1 ≤A X ′

1 ↔ Y1 ≤B Y ′
1)

(X2 ≤A X ′
2 ↔ Y2 ≤B Y ′

2)
(u = X1 ↔ y1 = Y1)
(u = X2 ↔ y2 = Y2)
(y1 <B y2)
(X1 = X2 <A u→ Y1 = Y2)

(10)

We notice that in the first four lines of this last formula the ≤A and ≤B can
be replace by =. Using this we deduce:



∃y1 ∈ B
∀y′1 ∈ B. ∃x′1 ∈ A
∃y2 ∈ B
∀y′2 ∈ B. ∃x′2 ∈ A
∀X1 ∈ A. ∃Y1 ∈ B
∀Y ′

1 ∈ B. ∃X ′
1 ∈ A

∀X2 ∈ A. ∃Y2 ∈ B
∀Y ′

2 ∈ B. ∃X ′
2 ∈ A


∧



(u ≤A x′1 ↔ y1 ≤B y′1)
(u ≤A x′2 ↔ y2 ≤B y′2)
(X1 ≤A X ′

1 ↔ Y1 ≤B Y ′
1)

(X2 ≤A X ′
2 ↔ Y2 ≤B Y ′

2)
(u = X1 ↔ y1 = Y1)
(u = X2 ↔ y2 = Y2)
(y1 <B y2)
(X1 = X2 <A u→ Y1 = Y2)
(Y ′

2 = y2 ↔ X ′
2 = u)

(11)

Let us fix an X2 ∈ A and take X1 = X2. We see that if X2 ≤A u then
Y2 6= y1. If X2 ≥A u then Y2 ≥B y2 >B y1. This shows that formula (11)
implies that Y2 6= y1, contradicting the fact that we have isomorphisms.

We have now established that if there is an external isomorphism between
〈A,≤A〉 and 〈B,≤B〉 then there is precisely one. Therefore the following for-
mula, which says that F is the union of all graphs of external isomorphisms
between 〈A,≤A〉 and 〈B,≤B〉, says that F is the graph of the unique external
isomorphism between 〈A,≤A〉 and 〈B,≤B〉. Since the formula is stratified, F
actually exists.

F =
{
〈u, v〉

∣∣∣∣ (
∀x ∈ A ∃y ∈ B
∀y′ ∈ B. ∃x′ ∈ A

)
(x ≤A x′ ↔ y ≤B y′) ∧ (u = x→ y = v)

}
(12)

So we can conclude that if there is an external isomorphism between 〈A,≤A〉
and 〈B,≤B〉 then its graph is a set. But the ordinals are externally isomorphic
to the ordinals below Ω, and cannot be internally isomorphic.

7 Least-fixed point Logics1

Fixed-point logics can be seen historically as arising from an attempt to prove
a completeness theorem. In an ideal world the following ought to be true: We
are thinking about finite structures only (otherwise the concepts of polynomial

1see Dawar-Gurevich [2]
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and exponential time make no sense). It ought to be the case that first-order
= polytime and second-order = exptime. However, this doesn’t work, at least
not straightforwardly. One can tell in polynomial time whether or not a graph
is connected, but there is no first-order expression φ such that a finite graph is
connected iff it is a model of φ. There is a polytime algorithm for testing whether
or not a group is simple, even though being a simple group is emphatically not
a first-order property. The counterexamples to the identification of polytime
with first-order all seem to be of the one flavour: polytime things that are not
first-order rather than the other way round. This suggests that in order to get
the missing completeness theorem we need a more expressive first-order syntax.
One way of getting more formulæ is to go to fixed point logic. Referee say

“Page 11, line
6: the first
WF should be
W.” I had al-
ready changed
a WF by W
but apparently
(s)he want
something
other. Maybe
it should be
clearer if we do
not use both
W and WF .

In this logic one can obtain the effect of a predicate modifier of transitive
closure of a binary relation in a manner that is in a clear sense first-order, so
the logic is genuinely richer than ordinary predicate calculus. However if we
add ∈ to the language (which we will have to if we are to do NF) we can also
characterise the unary predicate WF (x) (meaning that x is well-founded) by
saying it is the least fixed point for the function taking the predicate W (x)
to the predicate (∀y ∈ x)(W (y)). That is to say one defines WF (z) to be
lfpW,x[∀y ∈ x.W (y)](z)

The “lfp” syntax is as follows. ‘W ’ is a second-order variable, rang-
ing over predicates. If W (y) is a predicate, so too is ∀y ∈ x.W (y).
lfpW,x[∀y ∈ x.W (y)](z) is the least fixed point for the operation taking the
first predicate to the second. This is obviously inconsistent, since the collection
of wellfounded sets cannot be a set.

This particular application of lfp-logic is inhomogeneous, in that the free
variables in the two formulæ ‘W (u)’ and ‘(∀y ∈ x)(W (x))’ are at different
types, and that is evidently the root of the trouble.

If we restrict use of this syntax to cases where the free variables are of the
same type we find that the least fixed points can be shown to exist in NF
anyway. This is because in those circumstances we are considering a monotone
homogeneous operation F taking sets to sets and this must have a fixed point
by the Tarski-Knaster theorem, provable in NF.

The fixed point logic we have just considered has a weaker version. Add
to first-order logic a predicate modifier of transitive closure. If we add to a
language containing a stratified but inhomogeneous predicate (such as ∈) we
have to decide how to assign types to formulæ containing the transitive closure.
How are we to type ‘x ∈∗ y’? The obvious solution is to allow it to be stratified
as long as x is given a lower type than y. But if we do this, it becomes possible
to say in a stratified way that x is a transitive set. This implies that the
collection of transitive sets is a set, contradicting an old result of Forster [3]. A
predicate modifier of transitive closure of homogeneous predicates is definable
in NF anyway.
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8 Inhomogeneous equality

In the course of preparing a paper on permutations methods in NF (still in
preparation) the authors toyed at one point with the idea of adding to the lan-
guage of NF countably many binary relations: =n, one for each integer number
n (where n can be positive or negative), which would behave like equality re-
lations and for which ‘x =n y’ is stratified with ‘y’ n types higher than ‘x’ for
n ≥ 0 or ‘x’ −n types higher than ‘y’ for n ≤ 0. The motivation can be seen
from the chapter on permutation methods in [3].

The motivation comes from topologies on permutation models. Let us fix
a model V of NF. It is natural to say that for any formula (maybe stratified)
φ(a1, . . . , an) and for any parameters (a1, . . . , an), the following set is open

{σ : V σ |= φ(a1, . . . , an)}

If we consider only stratified φ, we have just, by a lemma of Henson (see [3]:

{σ : V σ |= φ(a1, . . . , an)} = {σ : V |= φ(Hk1(σ, a1), . . . ,Hkn
(σ, akn

))}

where the ki (i = 1, . . . n) are the levels of stratification of a1, . . . , an in φ. Here
(and in our forthcoming paper on permutation methods in NF) we writeHk(σ, x)
where in [3] (and Henson’s original paper) we would have written σk(x).

In order to study this topology in more depth, it would be interesting to
know whether or not, given (a1, . . . , an), (b1, . . . , bn) and k1, . . . , kn, there is a
permutation σ with:

Hk1(σ, a1) = b1 ∧ · · · ∧Hkn
(σ, an) = bn

If k1 = · · · = kn (which corresponds to the case where all ai have the same
level of stratification in φ) this is easy: there will be such a permutation iff the
tuples a1, . . . , an and b1, . . . , bn satisfy the same equalities, in the sense that
ai = aj iff bi = bj .

Moreover this last fact can be expressed by a stratified formula. In the
general case where the ki are not all equal, the answer would be true if a1, . . . , an

and b1, . . . , bn satisfies the same “equality relations” but where “aki
= akj

” is
stratified where aki is of level ki and akj is of level kj . At this point, we thought
that all will be all right just by adding some supplementary “inhomogeneous
equality relations” to NF and to put suitable axioms on these.

Let us describe more precisely these “equality relations”:
The language is (∈,=n), (one symbol =n for each concrete integer number

n). We will work here in the first order theory without equality. Consider the
following sheme:

1. “Extensionality”: (∀xy)(x =n y ↔ (∀z ∈ x)(∃w ∈ y)(z =n w) ∧
(∀z ∈ y)(∃w ∈ x)(w =n z))

2. “Substitution scheme”: From x =n y and φ(y, z1 . . . zk) infer
(∃w1 . . . wk)(w1 =n z1 . . . wk =n zk ∧ φ(x,w1 . . . wn))

12



We add the comprehension scheme for stratified formulas:

3. Comprehension scheme: If φ(x, y1, . . . , yn) is stratified then

(∀y1, . . . ,∀yn) ∃u ∀t t ∈ u ⇐⇒ φ(t, y1, . . . , yn)

The idea is that =0 should play the rôle of the “real” equality. Notice
however that the axioms we have considered for =0 are much weaker than the
usual axioms for the equality relation: for example, prima facie there appears
to be no way to infer x =0 x.

It would have been natural to add some more axioms for these equality
relations in order to ensure that they look more like genuine equality. Here we
have retained only the minimal axioms needed to derive the paradox.

Consider the formula φ(y):

(∃y′)( y′ =1 y ∧ y′ /∈ y)

and consider the formula ψ(x) with one free variable x which is

∀y. y ∈ x↔ φ(y)

the formula ∃y′ y′ =1 y ∧ y′ /∈ y being stratified the comprehension scheme say
that there is at least one x with ψ(x). Pick such an x and call it R. We have:

∃R′ R′ =1 R (13)

To prove (13) take a formula with two free variables φ(x, y) such that φ(x, y)
is true for any value of x and y (for example take x =0 y ∨ x 6=0 y). Take a
set z satisfying ∀x. x ∈ z → ⊥ and call this set ∅. We have φ(∅, R). By the
extensionality axiom for =1, we have ∅ =1 ∅ and the substitution scheme tells
us now that ∃R′. R′ =1 R such that φ(∅, R′) which shows (13).

Now we derive Russell’s paradox: suppose that R ∈ R, from the definition
of R we infer ∃R′ R′ =1 R ∧ R′ /∈ R. This implies ¬φ(R′) (by the definition of
R). By the substitution scheme we have ¬φ(R) and this means R /∈ R (by the
definition of R).

Conversely, suppose that we have R /∈ R. So (∀R′. R′ =1 R → R′ ∈ R).
Take R′ with R′ =1 R which exists by (13). As R′ ∈ R, we have φ(R′) and also
φ(R) by the substitution scheme and thus R ∈ R.
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