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10 Work still to do 46
I am very grateful to Nathan Bowler for supplying a crucial little aperçu

that enables one to dispense with the axiom of choice for pairs in the proof of
one of the principal results (corollary 3). And also for helpful critical comments
(in particular spotting an embarrassingly large lacuna in the proof of lemma
8) that have sharpened up the presentation greatly. By rights he should be a
co-author, but he has asserted his moral right to not be identified as the (or an)
author of this work: his reward will be in heavan . . . and all mistakes are mine.

1 Introduction and Summary

Recently Zuhair Abdul Ghafoor Al-Johar [17] has directed our attention to a
syntactic constraint that is—on the face of it—tighter than NF’s device of strat-
ification1; in this little essay I consider a weakening, namely the generalisation
of stratification to stratification modulo n. So far the coterie of NFistes has
considered neither the possibility that the class of unstratified formulæ in the
language of set theory might admit any structure or gradation, nor the possi-
bility that failure-of-stratification (which perhaps we can call dysstratification)
might come in degrees, let alone the possibility that recognition of such degrees
might allow one to gain understanding and prove useful facts.

So stratification-mod-n opens a new vein, and the purpose of this note is to
advertise some nuggets and prepare the ground for future. It has to be admitted
that stratification-mod-n comes across as a highly artificial notion, of interest
only to those whose critical faculties have been awakened by prior exposure to
the idea of stratification. However, as we shall see below, there are familiar
set-theoretic notions that are stratifiable-mod-n so the concept is not vacuous
in practice. Further, there is a nontrivial result that makes essential use of
this notion, and we will see it in section 8 where we show (theorem 6) that—
for NF—duality for formulæ that are stratifiable-mod-2 is consistent relative to
NF. Altho’ we do not believe that this result is best possible it is nevertheless
worth mentioning beco’s it is a significant improvement on what has so far been
known about duality. We still believe that duality for all formulæ is consistent
relative to NF. If we achieve that, stratification-mod-n can perhaps go back to
the shades whence it came. But perhaps by then it will have thrown useful light
on other ideas: we shall see.

2 Stratification

Even readers who are familiar with the idea of stratification should probably
read this section, since the treatment here is slightly more abstract than the
usual one, and is tailored to the developments that follow.

1Tho’ recent work of Nathan Bowler seems to establish (modulo some very minor set-
theoretic assumptions) that every stratifiable formula is equivalent to an acyclic formula. I do
not yet understand his proof, and he hasn’t published it. However I see no reason to doubt it.
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Let L = L(∈,=) be the language of set theory. We associate to every
formula φ ∈ L a digraph as follows. First we identify two variables ‘v’ and ‘v′’
if φ contains either of the atomic subformulæ ‘v = v′’ or ‘v′ = v’, and so on,
recursively. The vertices of the digraph are the equivalence classes of variables
in φ, and we place a directed edge from one vertex v to another vertex v′ if the
atomic formula ‘v ∈ v′’ is a subformula of φ.

We call this graph the derived graph of φ, and write it Gφ.

Our digraphs are allowed to have loops at vertices, and may have multiple
edges in the restricted sense that there could be a directed edge from v to v′

as well as a directed edge from v′ to v—but only one in each direction. In a
digraph we can have a special notion of a path from v1 to v2 which allows us
to “go the wrong way”. The length of such a path is computed by adding 1
every time you follow an arrow the right way, and subtracting 1 every time you
go the wrong way. To keep things tidy we will regard loops-at-vertices as paths
of length 0.

For n ≤ ℵ0 the n-gon Gn is the unique connected digraph with precisely n
vertices where every vertex has indegree 1 and outdegree 1. It is a reduct of the
integers mod n, in that it has successor-mod-n but does not have addition or
multiplication. Despite this document bearing the title “stratification mod n”
arithmetic mod n plays essentially no rôle in what follows: if we are to sensibly
describe the circular stratification that is of interest to us here then it is the
n-gon Gn that we need—rather than Z/nZ—because the additive and multi-
plicative structures of Z/nZ do nothing for us when computing stratifications;
they are merely distractions.

G7

Unlike the integers-mod-n the n-gon Gn is not rigid: its automorphism group
is the cyclic group2 Cn. This matters because the set of stratifications-mod-n

2Dana Scott points out that thinking of Gn as a polygon isn’t entirely correct either, since
polygons have reflections and reflections have no meaning in this context.
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of a formula φ are “closed under rotation” so that if there is one there are n.

TC5T

∈

∈

∈

∈

∈

There is a slight problem when n = 2, since digraphs cannot normally have
multiple edges, but we will tough this one out. And we still entertain hopes
that the ℵ0-gon will turn out to have a name already. For the moment let’s call
it the Z-gon.

The theory of n-gons is Horn, so the class of n-gons is closed under prod-
ucts and homomorphisms. In particular there is a homomorphism Gm →→ Gn
whenever n divides m, and we will exploit this fact, for example in the proof of
remark 1.

DEFINITION 1
A stratification graph is one where

(∀v1)(∀v2)(all paths from v1 to v2 are the same length).

A stratification-mod-n graph is one with a homomorphism onto the n-gon.
If we don’t want to mention the ‘n’ we will say that a graph that is stratified-

mod-n is circularly stratified.

Equivalently a graph is a stratification-mod-n graph iff, for any two vertices v1
and v2, all paths from v1 to v2 have the same length modulo n.

Observe that, for each n, the theory of stratification-mod-n graphs is a first-
order theory, indeed a universal theory.

A ‘moiety’ is a set x such that |x| = |V | = |V \ x|.
A formula is (Crabbé)-elementary iff all its variables are related by the

ancestral of the relation “v and v′ occur in an atomic subformula together”. We
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will tacitly assume in what follows that all our formulæ are Crabbé-elementary.
Classically (though not constructively) every first-order formula is equivalent
to a boolean combination of elementary formulæ (and every closed first-order
formula is equivalent to a boolean combination of closed elementary formulæ)
so there is little cost in making this simplifying assumption. Without it, some
of the proofs below would become snarled up in annoying minor details, so we
plead for the reader’s indulgence.

DEFINITION 2
A formula is stratifiable iff its derived digraph is a stratification graph.

A stratification of a formula φ is a homomorphism from the
derived graph Gφ of φ to the Z-gon;

A stratification-mod-n of a formula φ is a homomorphism from the
derived graph Gφ of φ onto the n-gon.

A formula is stratifiable mod n iff its derived digraph is a
stratification-mod-n graph.

Again, if we do not want to mention the ‘n’ we will say of a formula that is
stratifiable-mod-n that it is circularly stratifiable.

Equivalently a stratification graph is one where, for all vertices v, all paths
from v to v are of length 0; a stratification-mod-n graph is one where, for all
vertices v and v′, all paths from v to v′ are of the same length mod n, or—
equivalently—for all vertices v, all paths from v to v are of length 0 mod n.

REMARK 1
(i) A formula that can be stratified both mod-n and mod-m can be stratified

mod-LCM(m,n), and conversely.
(ii) A formula that is stratifiable-mod-n for arbitrarily large n is just plain

stratifiable, and a stratifiable formula is stratifiable-mod-n for all n.

Proof:
(i) Let φ be such a formula, and Gφ its derived graph. φ is both stratifiable-

mod-n and stratifiable-mod-m which is to say that there are homomorphisms f :
Gφ →→ Gn and g : Gφ →→ Gm. Consider now the graph G = {〈f(v), g(v)〉 : v ∈
Gφ} with the obvious edge relation. We want to show that G is the LCM(m,n)-
gon. It is a graph of size at most n·m. There is a homomorphism λv.〈f(v), g(v)〉 :
Gφ →→ G. Clearly every vertex in G has indegree 1 and outdegree 1, so it is
either a gon (if it is connected) or a union of gons (o/w). It is also clear that
if we apply the edge operation of the graph G n times to an ordered pair we
reach an ordered pair with the same first component, and if we apply the edge
operation m times to an ordered pair we reach an ordered pair with the same
second component, so if we apply the edge operation LCM(m,n) times to an
ordered pair we get back to that same ordered pair. And LCM(m,n) is the
smallest number of times we can apply the edge operation of G to secure this
effect. Therefore one of the connected components of G is the LCM(m,n)-gon,
so G is the LCM(m,n)-gon as long as it is connected.
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To establish that it is—indeed—connected, we show that, for all vertices
v, v′ in G, there is a path from 〈f(v), g(v)〉 to 〈f(v′), g(v′)〉. Recall that Gφ is a
stratification graph, so there is a well-defined distance, d, from v to v′. We can
now see that the distance from 〈f(v), g(v)〉 to 〈f(v′), g(v′)〉 is precisely d, so G
is connected.

For the converse, if φ is stratifiable-mod-LCM(m,n) then there is a homo-
morphism f : Gφ →→ GLCM(m,n). We compose f with the homomorphism from
GLCM(m,n) onto Gn, thereby showing that φ is stratifiable-mod-n; similarly φ
is also stratifiable-mod-m.

(ii) If n > length(φ), then any stratification-mod-n of φ is (or, more correctly,
can be easily modified into) a stratification. For the other direction, observe
that, for every n, the Z-gon maps onto the n-gon Gn.

That is literally true, but we have to be very careful how we state things
like this, because we will see later (in section 3) examples of expressions that
are, for each n, equivalent to formulæ that are stratifiable-mod-n but are not
equivalent to any stratifiable formula.

So the picture is: we only have to worry about stratifiability-mod-p for
p prime, and the various stratifiabilities-mod-p are the weakest conditions;
stratifiability-mod-mn is stronger than stratifiability-mod-n, and all these are
weaker than stratifiability tout court, which is the conjunction of them all. The
various stratifiabilities-mod-p with p prime all seem to be equally weak, and
they are all of minimal strength.

It may be worth noting that we cannot strengthen remark 1 by modifying
the asssumption on the formula to being merely equivalent both to a formula
that is stratifiable-mod-n and to a formula that is stratifiable-mod-m, because
of the Axiom of Counting. For every n, the Axiom of Counting is equivalent
(modulo NF) to a formula that is stratifiable mod n (we will see a proof of this
on p 20) so the analogue of remark 1 part (ii) would tell us that it is equivalent
to a stratifiable formula. However, it is known that it is not equivalent (modulo
NF) to any stratifiable formula. However, the Axiom of Counting is invariant,
so it might be possible to strengthen remark 1 by modifying the asssumption
on the formula to being merely equivalent (mod NF) both to a formula that is
stratifiable-mod-n and to a formula that is stratifiable-mod-m, if the conclusion
we want to infer is that the formula in question is merely invariant (modulo NF)
rather than actually stratifiable. Explain ‘in-

variant’?

2.1 Wrapping up miscellaneous definitions

Finally we wrap up some definitions and notations. Some of them are standard
in an NF context but a clear summary of them can do no harm.

We write ‘x∆ y’ for the symmetric difference of two sets x and y.
ι is the singleton function: ι(x) = {x}. If ι �x exists we say x is strongly

cantorian.
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We write ‘Symm(X) for the full symmetric group on X.
In practice X is always V .
j : Symm(V )→ Symm(V ) is defined so that j(σ)(x) = σ“x.
Let us use lower-case fraktur characters for variables ranging over conjugacy

classes.
If there is σ such that (jσ)−1 · τ · σ = π then we say τ and π are skew-

conjugate. Observe that this relation of skew-conjugacy is in fact an equiva-
lence relation. However the definition is not stratified and (in NF) the graph
of the relation is not a set and the equivalence classes are not sets. The skew-
conjugacy class of 11, the identity relation, is the class of internal automorphisms
and it should be easy to show that that need not be a set (tho’ i have not done
so so far!)

The significance of this relation is that skew-conjugate permutations give
rise to isomorphic permutation models, as follows. Suppose τ and π are skew-
conjugate; then x ∈ τ(y) iff x ∈ (jσ)−1 · π · σ(y) iff σ(x) ∈ π · σ(y) which is as
much as to say that σ is an ∈-isomorphism between V τ and V π.

However skew-conjugacy doesn’t seem to be a congruence relation for very
much. Certainly not for the group-theoretic operations of product or inverse.
As far as i can see σ skew-conjugate to π doesn’t imply σ−1 skew-conjugate to
π−1, tho’ i do not have any counterexamples to hand. It might be an idea to
find some.

Minding your ps and qs:

A partition P of a set X is a set of pairwise disjoint subsets of X s.t.
⋃

P = X.
The members of P are pieces (of P). I shall use the letter ‘P’ to range over
partitions; ‘Π’ will be used for products (in particular for products of (pairwise
disjoint) transpositions, as in ‘Πx∈A(x, V \ x)’). P(x) is the power set of x.
B(x) = {y : x ∈ y}, the principal ultrafilter in the powerset algebra P(V ).P

(x) = {y : y ∩ x 6= ∅} and is thus dual to P, in the sense that b(x) =
V \ (P(V \ x))—which is why we write it with an upside-down ‘P’. The fact
that B(x) =

P
({x}) also helps.

3 Motivating stratification-mod-n

3.0.1 The ∈-game

The ∈-game Gx in [11] is played by two players—I and II—and is initiated by
player I picking a member of x; thereafter the players move alternately, each
picking an element of the other’s previous choice until one of them attempts to
pick a member of the empty set and thereby loses. (That is the only way the
game can end). This subject matter has a naturally stratifiable-mod-2 flavour:
“Player I has a Winning strategy in Gx” and “Player II has a Winning strategy
in Gx” are both stratifiable-mod-2. The first is

(∀y)(
P

(P(y)) ⊆ y → x ∈ y)
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which is as much as to say that x belongs to the ⊆-least fixed point for X 7→P
(P(X)). The second is

(∀y)(P(
P

(y)) ⊆ y → x ∈ y).

which is as much as to say that x belongs to the ⊆-least fixed point for X 7→
P(

P
(X))). (Recall from page 7 that

P
(x) is {y : y ∩ x 6= ∅}.)

It’s worth asking how much of this stuff we can describe in formulæ that are
stratifiable-mod-(2n). Start with the case n = 2 to keep things simple. Suppose
X is the ⊆-least fixed point for X 7→

P
(P(

P
(P(X)))). Suppose x ∈ X; then

player I can pick something y ∈ x s.t. any z ∈ y that II picks will be inP
(P(X)). Similarly suppose x ∈

P
(P(X)); then player I can pick something

y ∈ x s.t. any z ∈ y that II can pick will be in
P

(P(
P

(P(X)))) which is of
course X. Thus, for any x ∈ X, the only way player II can prevent the play
of Gx from returning them to X is for II to lose the game en route. But it’s This still

needs some
work done on
it!

easier than that. Any fixed point for X 7→
P

(P(X)) is also a fixed point for
X 7→

P
(P(

P
(P(X)))). Therefore It will suffice to show that the ⊆-least fixed

point for X 7→
P

(P(
P

(P(X)))) is also a fixed point for X 7→
P

(P(X)), because
it will then be the least. I think all we have to do is show that if there are any
fixpoints for X 7→

P
(P(X)), then the least fixpoint for X 7→

P
(P(

P
(P(X))))

will be one of them. (We have to be careful how we state this because there are
functions without fixpoints whose squares have fixpoints.)

3.0.2 The Axiom of Counting

The axiom of counting is unstratified and not equivalent modulo NF to any
stratifiable formula but is, for each concrete n, equivalent modulo NF to a
formula that is stratifiable-mod-n. It’s also invariant. The same goes for
AxCount≤ (with a bit more work) since—for any concrete k—AxCount≤ can
be written as ‘(∀n ∈ IN)(n ≤ T kn)’.

see also section 5

4 Preservation Results for Stratification-mod-n

We start with a definition from [5].

DEFINITION 3 H(0, τ) =: 11V ; H(n+ 1, τ) =: (jnτ) ·H(n, τ).

This H notation will only ever be used with concrete naturals in first argu-
ment place.3

The effect of this notation is that, for any τ and any concrete n, (∀xy)(x ∈
τ(y) ←→ H(n, τ)(x) ∈ H(n + 1, τ)(y)). The intention behind the design of
this family of permutations derived from a single τ is to prove that, when φ is

3so we shouldn’t use these purely concrete chaps as arguments; they should be hidden
in the syntax? The trouble with this policy is that we don’t want footnotesized things like
‘LCM(n,m)’.
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stratifiable, φτ is equivalent to the result of replacing every occurrence of each
free variable ‘v’ with ‘H(nv, τ)(v)’ where nv is the concrete natural number
associated to the variable ‘v’ in a fixed stratification of φ. In the treatment
here, our stratifications are functions from vbls(φ) to the Z-gon or the n-gon
and do not take numbers as values. This can be remedied by composing a
stratification with a decoration-by-numbers (satisfying the obvious adjacency
condition) of the gon in question.

It might be worth minuting other facts about the family of permutations
engendered in this way from a permutation σ. For example H(n + m,σ) =
jm(H(n, σ)) ·H(m,σ). We don’t think there is a nice formula for H(n ·m,σ).
This is another manifestation of the fact that there is no natural arithmétic
structure on the set of type indices.

We have a theorem of Scott that stratifiable formulæ are preserved under
the Rieger-Bernays permutation construction. This is an assertion of the form

(∀π)(F (π)→ (∀φ)(φ ∈ Γ→ (φπ ←→ φ))) (A)

or equivalently

(∀φ)(φ ∈ Γ→ (∀π)(F (π)→ (φπ ←→ φ)))

Assertions like (A) have converses of the form

(∀π)[(∀φ)(φ ∈ Γ→ (φπ ←→ φ))→ F (π)] (B)

and of the form

(∀φ)[(∀π)(F (π)→ (φπ ←→ φ))→ φ ∈ Γ] (C)

In this section we consider the project of proving assertions like these where
Γ is the set of formulæ that are stratifiable-mod-n. This will involve us in
identifying interesting properties of permutations to serve as the ‘F ’ in the
statement of the results

4.1 Instances of (A): (∀π)(F (π)→ (∀φ)(φ ∈ Γ→ (φπ ←→ φ)))

PROPOSITION 1 If φ is stratifiable-mod-n then it is preserved under all
Rieger-Bernays constructions using setlike permutations π s.t. H(n, π) = 11.

Proof:
The proof is a straightforward adaptation of the proof given by Henson. Reference?
In Henson’s treatment of the stratified case we fix a stratification s for φ.

[In that treatment stratifications take values in Z, not in the Z-gon.] Then,
whenever we look at a subformula ‘x ∈ σ(y)’ in φσ we replace it by ‘H(n, σ)(x) ∈
H(n+1, σ)(y)’ where n is the type given to the variable ‘x’ by the stratification
s. We then observe that, for every variable, all occurrences of that variable
in the rewritten version of φσ are prefixed by a ‘H(n, σ)’ where n is the type
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given to ‘x’ by the stratification s. Then we appeal to the fact that H(n, σ) is a
permutation, so we can reletter ‘H(n, σ)(x)’ as ‘x’, and this manipulation turns
φσ back into φ. The difference here, in this case, is that our subscripts are no
longer integers but are integers-mod-n, so that if i ≡ j (mod n) we must have
H(i, σ) = H(j, σ). This is equivalent to requiring that H(n, σ) be the identity.

4.2 Instances of (C): (∀φ)[(∀π)(F (π)→ (φπ ←→ φ))→ φ ∈ Γ]

There is a theorem, proved by Pétry and Forster ([7], [15], [16]) to the effect
that: if a formula is preserved under all Rieger-Bernays constructions using
setlike permutations then it is equivalent to a stratifiable formula.

Is there an analogous result to the effect that if a formula is preserved under
all Rieger-Bernays constructions using setlike permutations σ = H(n, σ) then it
is equivalent to a formula that is stratifiable-mod-n? Something like that ought
to be true, and it’s probably worth proving.

4.3 Instances of (B): (∀π)[(∀φ)(φ ∈ Γ→ (φπ ←→ φ))→ F (π)]

We start with a very easy example:

REMARK 2 If f : V → V (possibly a proper class) satisfying φ ←→ φf for
all stratifiable expressions then f must be a setlike permutation.

Proof: The axiom of extensionality is stratifiable, and any f that preserves it
must be onto. If f preserves an (n+ 1)-stratifiable formula then H(n, f) has to
be defined, so f has to be n-setlike.

One might expect that if π is a permutation that preserves all formulæ that
are stratifiable-mod-n then H(n, π) = 11. Something with that sort of flavour
should be true. The following is a straw in the wind.

REMARK 3 If H(n, σ) = 11 and H(k, σ) = 11 then H(HCF (n, k), σ) = 11.

Proof: This is because, for every σ, the class of naturals n s.t. H(n, σ) = 11
is closed under subtraction4 so we can, as it were, perform Euclid’s algorithm.
If H(n, σ) = 11 and H(k, σ) = 11, with n > k then reflect that H(n, σ) is
(jkH(n− k, σ)) ·H(k, σ). So jkH(n− k, σ) = H(n, σ) ·H(k, σ)−1 = 11 · 11 = 11.
But then H(n− k, σ) = 11 as well.

This doesn’t actually say that if σ both preserves formulæ that are
stratifiable-mod-n and preserves preserves formulæ that are stratifiable-mod-
k) then it preserves formulæ that are stratifiable-mod-HCF (n, k), but it has
that flavour.

4prima facie we cannot expect this thing to be a set, since it is defined by an unstratified
expression.
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One wants to say that a permutation that preserves all closed formulæ must
be an ∈-automorphism, but that doesn’t seem to be strictly true. At any rate
we don’t know how to prove it! Perhaps we can prove it by reasoning about
Ehrenfeucht games. What we do know how to prove is that, if V ' V σ, then
σ is skew-conjugate to the identity. The only permutation that preserves all
expressions (i.e., including open formulæ) is 11.

And, once we have identified predicates F that appear in theorems of flavour
(B), one wants to find a structure for the set of all permutations on V such that,
for each F , the class of permutations that are F is a substructure not a mere
subclass.

One thing one might hope to prove is that if φ is stratifiable-mod-n and is
logically equivalent to a formula that is stratifiable-mod-m then it is logically
equivalent to a formula that is stratifiable-mod-nm . . .

Thinking aloud about this. . .
If φ is equivalent to something that is stratifiable-mod-n then φ is equivalent

to (∀σ)(H(n, σ) = 11→ φσ). Now letτ be a permutation satisfying H(m, τ) = 11
and consider what happens in V τ . We have

(∀σ)(H(n, σ) = 11→ φσ)τ

This requires thought! “H(n, σ) = 11” can be thought of as a stratified
formula with n occurrences of ‘σ’, one at each of n distinct adjacent types,
namely

jn(σ) · jn−1(σ) · · · · jn−2(σ) · σ = 11

jn(H(k, τ)(σ)) · jn−1(H(k+1, τ)(σ)) · jn−2(H(k+2, τ)(σ)) · · · H(k+n, τ)(σ) = 11

where we have chosen k large enough so that H(k + 1, τ)(σ) is conjugated
to H(k, τ)(σ) by τ or ji(τ)

Now let’s think about what happens to φσ in the permutation model. This
is a problem well-known to your humble correspondent.

(x ∈ σ(y))τ becomes
H(k − 1, τ)(x) ∈ H(k + 1, τ)(σ)(H(k, τ)(y)) becomes
x ∈ (τk)−1“τk+2(σ)(τk+1(y))
Need to continue rewriting.
Now we reletter ‘τk(σ)’ as ‘σ’ throughout.
jn(τk(σ)) · jn−1(τk+1(σ)) · ·jn−2(τk+2(σ)) · · · τk+n(σ) = 11 becomes

jn(σ) · jn−1(στ ) · ·jn−2(στ2 · · ·στn) = 11

which is

jn(σ) · jn−1τjn−1 · σ · jn−1τ−1) · ·jn−2(στ2) · · ·στn = 11

and we can do some cancellation. . .

Definitely work to be done in section 4; not sure what was going on there(!)
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5 Stratifiable mod n for every n

Given a theory T , there is a natural class consisting of those formulæ that, for
each n, are equivalent modulo T to a formula that is stratifiable-mod-n. It is
larger than the class of stratifiable formulæ and even (tho’ this is less obvious and
of course depends on T ) contains formulæ that are not T -invariant. Whether
or not there are formulæ that are T -invarinat but are not in our class i do not
know at this stage.

We will consider the following formulæ: stcan(x), WF(x),
⋃
x ⊆ x

As we shall see, the axioms TCl and TCo of transitive closure and transitive
containment are both of this class.

DEFINITION 4
Let us say x is n-hemitransitive iff (∀y)(y ∈n+1 x→ y ∈ x).

Thus ordinary transitivity is 1-hemitransitivity. It is easy to see that n-
hemitransitivity is stratifiable-mod-n.

It is also Horn, so there is a notion of the n-hemitransitive closure of a set.
Observe that if x is n-hemitransitive then x ∪

⋃
x ∪ . . .

⋃n−1
x is transitive.

So “There is an infinite transitive set” is, for each n, equivalent to “There is
an infinite n-hemitransitive set” . . . which of course is stratifiable-mod-n. So it
ought to be invariant. Suppose then that we are working in a model of NF +
AxCount≤ that contains Vω. Holmes’ clever permutation will kill off Vω but
it would leave behind an infinite transitive wellfounded set. This doesn’t seem
frightfully plausible.

Now we can see that the fact that if x is n-hemitransitive then
⋃<n

x is
transitive means that the axiom of transitive containment belongs to our special
class of formulæ.

Let TCln say that every set has an n-hemitransitive closure. Considera-
tion of

⋃<n
X shows that this implies TCl. For the other direction we will

need unstratified separation—annoyingly. TCon implies TCo; for the other di-
rection we do not need any unstratified separation, since any transitive set is
n-hemitransitive for any n.

Consider the sets—call them Xn for the nonce—where Xn is the least fix-
point for x 7→ (Pℵ0)n(x). Xn is the collection of sets of (finite) rank a multiple
of n. The assertion that Xn exists is stratifiable-mod-n, and Vω is of course⋃≤n

Xn. Thus the assertion that Vω exists is, for each n, equivalent (over
NF) to a formula that is stratifiable-mod-n. However, beco’s of Holmes’ clever
permutation, it is not invariant!

This shows that, for T = NF + AxCount≤ at least, there are formulæ that,
for each n, are T -equivalent to something that is stratifiable-mod-n but are not
T -invariant. This doesn’t prove the same for NF, but the damage is done.

Can we do the same for NF? Clearly one wants to put Holmes’ clever permu-
tation to use. Let An be the assertion that there is an infinite n-hemitransitive
subset of Xn. Is An equivalent to the assertion that there is an infinite transitive
subset of Vω? I can only see the implication one way.
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Probably the most important unstratified set-theoretic property is wellfound-
edness; it cannot be captured by any stratfiable formula but can it be captured
by a formula that is stratifiable-mod-n? The following elementary observation
took me by surprise.

PROPOSITION 2 “x is wellfounded” is, for every n, equivalent to a formula
that is stratifiable-mod-n.

Proof:
In fact there is a parametrised family of such formulæ. The typical formula

is (∀y)(Pn(y) ⊆ y → x ∈ y), or WFn(x) for short. Notice that for n = 1
this gives the natural inductive definition of the class of wellfounded sets as the
least fixpoint for the power set function. WFn(x) is stratifiable-mod-n all right,
but is it equivalent to WF (x)? One direction is easy: Pn(y) ⊆ y is a weaker
condition than P(y) ⊆ y so if you belong to everything satisfying the weaker
condition you certainly belong to everything satisfying the stronger condition.
So WFn(x) implies WF(x). What about the other direction?

Let us say that a set y s.t. Pn(y) ⊆ y is n-fat5. Observe that if y is n-fat so
is P(y). Suppose now that every member of x belongs to every n-fat set. Then
x is included in every n-fat set, and so is a member of the power set of any n-fat
set. So it is a member of every n-fat set. Thus we can prove by ∈-induction
that every wellfounded set is WFn.

“(∀y)(Pn(y) ⊆ y → x ∈ y)” seems to make sense only in NF-like contexts,
where separation fails and sets can be supersets of their own power sets. However
if we contrapose and replace y by V \ y we obtain

(∀y)(x ∈ y → (∃z ∈ y)(z 6∈ Pn(V \ y))).

which make sense in a context with full separation. This development is analo-
gous to the way in which one obtains the concept of regular set from the natural
inductive (least-fixpoint) definition of wellfounded set as (∀y)(P(y) ⊆ y → x ∈
y).

While we are about it (tho’ perhaps this observation could be better placed
elsewhere) this shows that altho’ stratified parameter-free ∈-induction seems
to be quite weak (it is open whether or not it proves anything more than the
nonexistence of a universal set) it is nevertheless the case that, for each n,
parameter-free ∈-induction for formulæ that are stratifiable-mod-n implies full
∈-induction.

6 Cylindrical Types

Stratifiable formulæ of the language of set theory are those from which one can
obtain wffs of TST by decorating the variables with indices indicating what

5This terminology is generalised from that in [1].
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levels they belong to. There is an analogous move to be made with formulæ
that are stratifiable-mod-n: one can obtain from them formulæ that are wffs of
a typed theory of sets whose levels are indexed by n-gons. The more properties
we succeed in capturing with formulæ that are stratifiable-mod-n the greater
the expressive power of these typed theories of sets will be.

We should note that—in contrast to stratification tout court—stratification-
mod-n is not a useful notion from the point of view of comprehension principles
in a one-sorted language, since there are paradoxical objects that are the ex-
tension of formulæ that are stratifiable-mod-n; one thinks of the n-fold Russell
class {x : x 6∈n x}—being the extension of the formula ‘x 6∈n x’ (which is
stratifiable-mod-n) which is a paradoxical object even in mere first-order logic.
This is discussed in section 4 of [4] and also below). Also, as we have just shown
(proposition 2), wellfoundedness is capturable by a formula that is stratifiable-
mod-n for any n (and is therefore expressible in L(TCnT)). Of course there are
no known paradoxical objects defined by stratifiable set abstracts.

So that’s a dead end, but there is an obvious link from formulæ that are
stratifiable-mod-n to the theory TZT+ Ambn. The usual Specker equiconsis-
tency analysis leads one thence to type theories whose levels are indexed by the
n-gon. One could perhaps call these theories “type theory mod n”, and that is
what i shall do here; the proper name will be “TCnT” (“theory of n cylindrical
types”).

Let’s be formal about it.

DEFINITION 5 The language L(TCnT), where n is a concrete natural num-
ber, has two binary relation symbols: ‘=’ and ‘∈’. Its variables each have a type
index as an integral part, and those type indices are precisely the elements of
the n-gon.

The axioms of TCnT are extensionality at each type, as with TZT, but there
is a subtlety with the set comprehension axioms. One cannot allow (∃x)(∀y)(y ∈
x ←→ y 6∈n y) to be an axiom (for obvious reasons) even tho’ this formula is
a wff of L(TCnT) and has the syntactic form of a comprehension axiom, and
‘y 6∈n y’ is a wff of the language. One allows set comprehension only for the
old TZT axioms. To be formal about it, a wff that looks like a comprehension
axiom is adopted as an axiom only if it is possible to rejig the type indices in it
so that the resulting formula is an axiom of TZT.

Thus the axioms of TCnT are “closed under rotation”, or ambiguous in
traditional parlance.

It may be worth noting that TCnT can expressed as a theory in the usual
one sorted first-order language L(∈,=) of set theory. However, since we will not
be making any use of this fact, we feel under no obligation to provide a proof.

The various analogues of Russell’s paradox prevent us from adopting as our
comprehension scheme for TCnT the obvious scheme of all expressions of the
form (∀~x)(∃y)(∀z)(z ∈ y ←→ φ(~x, z)) that belong to L(TCnT). Of course the
mere fact that the existence of {x : x 6∈n x} is not a comprehension axiom does
not ipso facto mean that the sets {xi : xi 6∈n xi} cannot exist at any of the
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n levels, though it will be shown below that first-order logic by itself suffices
to show that they cannot exist at all levels at once. TCnT has comprehension
axioms and can prove that they cannot exist at even one level. This fact is
probably worth minuting.

REMARK 4 TCnT ` Rin = {xi : xi 6∈n xi} does not exist for any i ≤ n.

Proof:
Reasoning in TCnT we pick on any level i and consider the possibility of

the existence of Rin = {xi : xi 6∈n xi}. Consider ιn−1(Rin); is it a member of Rin
or not? If it is, then it belongs to an ∈-loop of circumference n, so it is barred
from membership of Rin. So it isn’t a member of Rin. So there are x1 . . . xn−1
with ιn−1(Rn) ∈ x1 ∈ x2 ∈ . . . ιn−1(Rn) an ∈-loop of circumference n. But then
x1 = Rn (peel off the brackets) showing that Rn ∈ Rn after all.

Notice that we have not used very much comprehension. All we have used
is the assumption that every set has a singleton. In fact all we need is that for
every x there is a nonempty subset of P(x), the point being that every set of
loop-free sets is itself loop-free.

Readers might like to note the curiosity that inside first-order logic pure and
simple (without using any set theory at all) we can show that {xi : xi 6∈n xi}
must fail to exist at least one level i. This, too, is probably worth minuting.

REMARK 5 It is a theorem of First Order Logic that that no model of TCnT
can contain Rin = {xi : xi 6∈n xi} for all i ≤ n.

Proof:
Suppose {x : x 6∈n x} exists at every level. Let us write ‘Ri’ for its manifes-

tation at level i. Let i be an arbitrary concrete natural ≤ n. Suppose Ri 6∈ Ri+1.
Then Ri belongs to an ∈-loop of circumference n, and there must be xi−1 in Ri

in this loop. But xi−1 ∈ Ri implies that xi−1 cannot belong to any such loop.
Thus we conclude Ri ∈ Ri+1. But i was arbitrary. So there is an ∈-loop of
circumference n consisting entirely of the Ri and this clearly cannot happen.

It doesn’t seem to be possible to spice up this proof to show (in first-order
logic) that none of the Ri exist. The nonexistence of {x : x 6∈n x} is a theorem of
first-order logic that is stratifiable-mod-n, but i know of no globally stratifiable-
mod-n cut-free proof. This fact (if it is a fact) is almost certainly related to
the fact (if it is a fact) that we cannot prove that {x : x 6∈n x} exists at no
level (tho’ we can show that it doesn’t exist at all). If we had a proof of the
nonexistence of {x : x 6∈n x} in FOL that was globally stratifiable-mod-n then
we could run it at any level and show that {x : x 6∈n x} exists at no level. The
following reflection suggests that there is no such proof. Consider the two-lobed
model with precisely one inhabitant in each lobe: a yin set that is a member of
the yang set (but not the other way round. The yang set (but not the yin set)
is a double-Russell class.

This does rather suggest that first-order logic holds no globally stratifiable-
mod-2 nonexistence proof for the double Russell class. . . and that this is true
even if we allow cut.
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6.1 Rieger-Bernays Permutation methods for TCnT

Rieger-Bernays methods generalise smoothly to TCnT. R-B methods in NF
enable one to obtain from any model of NF a new model which satisfies the same
stratifiable sentences but tweaks the truth-values of some formulæ that are not
stratifiable. In the TCnT context we have the same notion of stratifiable, but
the role of non-stratifiable formulæ is played by formulæ that are stratifiable-
mod-n. Formulæ that are frankly unstratified don’t enter into it as the man in
the parrot shop would say. The R-B method which we develop below for TCnT
will enable us to obtain from a model M of TCnT a model that satisfies the
same stratifiable sentences as M but satisfies different sentences that are merely
stratifiable-mod-n.

It goes as follows. Let M be a model of TCnT. To each of the n levels of
M associate an internal permutation τ of that level. Thus we have a suite of
permutations. Then we declare a new membership relation between levels i and
i + 1 by xi ∈new xi+1 iff xi ∈ τ(xi+1). The relettering now proceeds as in the
proof of Henson’s lemma. For this we naturally need all the permutations in
the suite to be setlike, just as in the original R-B setting. Realistically we can
take them to be sets of the model.

Observe the two special cases: NF and TST. NF is the special case TC1T.
There is only permutation, and we are in the standard situation with R-B models
for NF. TST is the case TC∞T and we have infinitely many permutations, one
for each level. In this case nothing happens, because there are no wellformed
formulæ that this process could possibly change the truth-value of. No wonder
nobody noticed it before!

If we want to preserve formulæ that are stratifiable-mod-k then we require
certain equations to hold between the permutations τ that we use. Consider
TC3T, the simplest case that is complicated enuff to partake of the general
flavour. We have a suite π, τ, σ of permutations. In the permutation model
x1 ∈ x2 becomes x1 ∈ τ(x2); x2 ∈ x3 becomes x2 ∈ π(x3) and x3 ∈ x1 becomes
x3 ∈ σ(x1). To reletter we have to rewrite x2 ∈ π(x3) as τ(x2) ∈ (jτ) · π(x3)
and then rewrite x3 ∈ σ(x1) as (jτ) · π(x3) ∈ (j2τ) · jπ · σ(x1). If we want to be
able to eliminate π, σ and τ from formulæ that are stratifiable-mod-3 (but not
stratifiable) then we will need (j2τ) · jπ · σ = 11. Call this The Equation For
n.

OK, so we have a model of TCnT, and we decorate it with permutations of
each level. This R-B construction preserves all stratifiable expressions. What
about expressions that are stratifiable-mod-(n ·k)? Then we have The Equation
For n · k. This is an equation w = 11 where w is a product of n · k things, with
k occurrences of each permutation. Persisting for the moment with the n = 3
example, we find that if we want our suite of permutations to preserve formulæ
that are stratifiable-mod-6, then we need τ , σ and π to satisfy

(j5τ) · (j4π) · (j3σ) · (j2τ) · jπ · σ = 11.

This looks messy, but i think it is correct.
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There is also the small matter of proving an analogue of the PHF theorem
for TCnT. We can obtain a model of TZT from a model of TCnT in the same
was as we obtain one from a model of NF. The analogue will then say that
M1 and M2 satisfy the same stratifiable sentences iff the two models of TZT
obtained from them have stratimorphic ultrapowers.

But what about stratifiable-mod-n? What condition on two models M1

and M2 of TCnT corresponds to them satisfying the same formulæ that are
stratifiable-mod-n · m? I’m guessing it will be the following. Any model of
TCnT can be turned into a model of TCm·nT in an obvious way. So: let M1

and M2 be two models of TCnT. Obtain two models of TCm·nT. Then M1 and
M2 satisfy the same formulæ that are stratifiable-mod-n ·m iff these two models
have isomorphic ultrapowers. I should be able to prove this but i am old and
tired and i have multiple infarct dementia.

We should probably try to find something to say about expressions that,
for every n, are logically equivalent to a formula that is stratifiable-mod-n. It’s
not true that all such sentences are stratified, because the axiom of counting is
a counterexample. An interesting example of a sentence of this kind is “every
wellfounded set is finite”. It’s not known if this allegation is invariant.

However, at least some such expressions are not invariant.

6.2 Possible Equiconsistency of TCnT and NF

Two fundamental questions:

(i) Is TCnT equiconsistent with NF?

(ii) Are there models of TCnT that are not ambiguous? Equivalently,
are there models of TZT+Ambn that are not models of Amb?

I’m guessing that the answer to both is ‘yes’, but i have no idea how to prove
it. Part of the trouble is that i can’t think of a stratified formula for which Amb
might fail while Amb2 holds.

Is TCnT equiconsistent with NF? One direction is easy. We can obtain a
model of TCnT from a model of NF by making n copies of the model of NF
and decorating them appropriately. The obvious way is as follows. Let level n
of M be V × {n} and let us declare that M |= xn ∈ yn+1 iff let xn = 〈x, n〉 in
let yn+1 = 〈y, n+ 1〉 in x ∈ y. M is clearly an ambiguous model.

However one would not expect every model of TCnT to be ambiguous, be-
cause that would mean that Ambn implies Amb, and that surely cannot be true.
It would be nice to obtain a model of TC2T that violates ambiguity. A simple
observation is that no model of TC2T can contain a Boffa atom in one lobe
and a Boffa antiatom in the other. This means that if we can find a model M
that has a Boffa atom and a Boffa antiatom in one lobe then M must violate
ambiguity, because an ambiguous model with a Boffa atom plus antiatom in
one lobe must also contain a Boffa atom plus antiatom in the other, and this is
impossible, as we have just observed.
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We can do this by a simple tweak of the obvious construction. Let τ
be some permutation that adds a Boffa atom and a Boffa antiatom, such
as (∅, B(∅))(V,BV ). Then we set both yin and yang to be V and we set
xyin ∈ yyang iff x ∈ y and xyang ∈ yyin iff x ∈ τ(y). Let us call this model M.

M is clearly extensional. If we pinch ourselves to keep in mind that the com-
prehension axioms of TC2T are the fully stratifiable instances of comprehension
and not the (larger) class of comprehension axioms that are stratifiable-mod-2
(Beware the double Russell class) then we can see that all the instances of com-
prehension for M follow smoothly from comprehension in the model of NF in
which we are working. (See also p 22.)

[One potentially useful piece of clarification. . . . What happens if we use τ on
both lobes, so that we set xyin ∈ yyang iff x ∈ τ(y) and xyang ∈ yyin iff x ∈ τ(y)?
Clearly we do not get Boffa atoms plus antiatoms in both lobes—beco’s we
can’t—but it might help to show what becomes of V and ∅ in each lobe. They
probably become something annoying that is almost an atom or an antiatom.]

However this construction does not resolve the question. Hitherto all dis-
cussions of ambiguity were in the context of TST. The scheme was: take any
stratifiable formula φ ∈ L(∈,=), decorate it with type indices on the variables,
and assert biconditionals between the results. The point is that all formulæ of
L(TST ) arise from formulæ in L(∈,=) by this process of decoration. However
L(TCnT) has extra formulæ that can be decorated in this way, namely the for-
mulæ that are stratifiable-mod-n. Ambiguity fails in the model M that we have
just considered, but the failure we have exhibited concerns not formulæ that
arose from stratifiable formulæ of L(∈,=), but a formula that arose from a for-
mula in L(∈,=) that was stratifiable-mod-n. I claim that M satifies ambiguity
for all formulæ that arose from stratifiable formulæ in L(∈,=). Let φ be any
closed stratifiable formula of L(∈,=). Fix a stratification of it. This stratifica-
tion awards every variable a decoration that is either an even natural or an odd
natural. We can now turn φ into a formula of L(M) in two ways: make every
variable with an even decoration into a variable of type yin and every variable
with an odd decoration into a variable of type yang or vice versa. But then in
both these cases any variable v that ever appears in a context “. . . ∈ τ(v)” only
ever appears in such contexts, and so can be relettered.

If we think of the task of finding a model of TC2T that is not ambiguous
as the task of finding a model of TZT that satisfies Amb2 but does not satisfy
Amb then it perhaps becomes clearer. This second task clearly remains undone.

It’s an old result (it was in Forster’s Ph.D. thesis, with a much improved
proof by Crabbé [2] subsequently) that TZT+ Ambn refutes AC, and by essen-
tially the same mechanism as does TZT+ Amb. The best guess is that all the
theories TCnT are equiconsistent with NF.

I noted above, in definition 5, that we have to make sure that our com-
prehension axioms are only those formulæ which become axioms of TZT, lest
we get Russell-style paradoxes. It might be worth thinking a bit about how
one might cautiously relax this restriction to admit some more comprehension
axioms. There is an analogue of strongly cantorian and altho’ one obviously
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cannot allow the class of analogue-stcan sets to be a set (for the usual reasons
concerning the Burali-Forti paradox) there doesn’t seem to be any objection to
the collection of finite analogue-stcan sets being a set.

Since “x is wellfounded” can now be captured by a formula that is
stratifiable-mod-n and separation for wellfounded sets is safe for many expres-
sions we should sort that out. In this next section we consider the property
“ιn �x exists” which is stratifiable-mod-n.

7 Modulo-n analogues of strongly cantorian

7.1 Analogues in NF

In this section we work in NF.
“ιn �x exists” is an analogue of x is strongly cantorian. Lots of things to be

said about it. Is this generalisation of strong cantorian-ness a good notion of
small set? In the categorial sense, that is?

I noticed years ago the fact that altho’ the existence of ι �x clearly implies
the existence of ιn �x, the converse does not seem to hold. If ι2 �x exists then
certainly x t ι“x is cantorian but that (and its analogues for n > 2) seem to be
as far as one can go. It would appear that, in principle, there might be sets x
s.t. ιn �x exists for some n but which are nevertheless not strongly cantorian.

The property “ιn �x exists” is inherited by subsets in the same way that
strong-cantorianness is, so it is an analogue of ‘strong cantorian’ rather than a
mere weakening of it—unlike ‘cantorian’ which (being a mere weakening) is not
inherited by subsets in the same way.

The possible existence of such sets is worth noting in the present context,
since for them one can prove an analogue of subversion of stratification for
formulæ that are stratifiable-mod-n.

Subversion of stratification says that, if M is a strongly cantorian set, and
φ an arbitrary formula, then {x ∈ M : φM (x)} exists. (φM is the result of
restricting all quantifiers in φ to M .) The analogue here would say that, if
ιn �M exists and φ is stratifiable-mod-n, then {x ∈ M : φM (x)} exists. Of
course this will hold in TCnT . . . which may be the correct setting for this
observation: TCnT has subversion of stratification for x s.t. ιn �x exists, in the
sense that the following holds.

REMARK 6 If ιn �M exists, and φ is stratifiable-mod-n then {y ∈M : φM (y)}
exists.

Should really
write out a
proof.

Proof:

Just as subversion for strongly cantorian sets gives us interpretations into
(extensions of) NF of fully unstratified set theories, subversion for sets x for
which ιn �x exists will give us interpretations into (extensions of) NF of set
theories satisfying syntactic contraints correspondingly less onerous than full
stratification.
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Subversion of stratification enables us to cutely finitise the restriction of the
scheme of ∆0 separation to formulæ that are stratifiable-mod-n. We know how
to finitely axiomatise stratifiable ∆0 separation (see the second edition of the
monograph [6]), and we can get full ∆0 separation from that axiomatisation
simply by adding the existence of ι �x for all x. The obvious thing to do is
augment the kit of rudimentary functions by adding a new rudimentary function
which gives ιn �x, and then rely on subversion.

Does this open up a vein of novel, more delicate, relative consistency proofs?
Possibly, but not if we are adopting an axiom of infinity: the assumption that
there is an (infinite) x s.t. ιn �x exists is as strong as the assumption that there
is an infinite strongly cantorian set. This triviality is worth minuting because
we will make use of it elsewhere (see p. 6).

REMARK 7
(i) If x is a wellorderable set s.t. ιn �x exists then x is strongly cantorian.
(ii) If there is an infinite x and a concrete n such that ιn �x exists then the

axiom of counting holds.

Proof:
(i) If x is a wellorderable set s.t. ιn �x exists then the order type of any

worder of x is certainly going to be less than all of Ω, Ω1 . . . 6, so we can assume
without loss of generality that x is an initial segment X of the ordinals. This
means that ιn �X exists, and that in turn means that Tn �X exists, and that
in turn means that we can prove by induction on the ordinals that Tn �X is
the identity. So, for every α ∈ X, Tnα = α. For every ordinal α (and so in
particular for every α ∈ X) we have α = Tα ∨ α < Tα ∨ α > Tα. The second
disjunct implies (apply T to both sides) Tα <2 α giving α < Tα < . . . Tnα
contradicting Tnα = α; the third disjunct is refuted similarly. So T �X exists
beco’s it is the identity, so ι�X exists as well.

(ii) This property “ιn �x exists” is preserved by power set as well as by subset,
so if there is even one infinite set which has it then IN will have it as well. (Just
as: IN is strongly cantorian if there is even one infinite strongly cantorian set).
But IN is wellordered, so we can apply part (i).

The other direction (inferring “ιn �IN exists” for arbitrary concrete n from
the axiom of counting) is easy. Thus, for every (concrete) n, the axiom of
counting is equivalent modulo NF to a formula that is stratifiable-mod-n. If φ
is, for each n, equivalent (modulo NF) to something that is stratifiable-mod-n
must it be (NF)-invariant? No, because the property of being a wellfounded set
is, for each n, equivalent (modulo NF) to something that is stratifiable-mod-n
but is not invariant. But what about closed formulæ? No, that doesn’t work
either, as we shall see below.

Let Macn be Mac with separation restricted to formulæ that are ∆0 and
stratifiable-mod-n. Analogues of the result in [10] to the effect that Mac +

6Ω is the order type of the set of ordinals; Ω1 = TΩ, and so on.
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TCl can be interpreted into KF can be obtained, saying that Macn + TCl can
be interpreted into KF, but these results are weaker than the result in [10].
However these refined constructions could turn out to be useful should there
turn out to be theories of the form Macn ∪{A} (where A is some formula not a
theorem of Mac). However no such examples leap to mind. Not to the authors’
mind anyway: ∃NO might have sounded like a starter but is is inconsistent with
the existence of ιn �x for all x. (This last follows from remark 7 part (i).)

The upshot of this is that ∃NO is incompatible with Macn, the point being
that ιn �the representative set of wellorderings would exist and that the quotient
would be strongly cantorian.

LEMMA 1 For all concrete n and k, (∀x)(ιn �x exists) implies (∀x)(ιn·k �x
exists).

Proof: We know that RUSC(R) always exists, so RUSCk(R) exists for all R and
all concrete k, so RUSCk(ιn �x) exists and so ιn �x composed with RUSCn(ιn �x)
exists, and that is ιn·2 �x. And so on for all the other multiples of n.

7.2 Ambiguity in TCnT

Take a simple example: TC2T. Since every formula that is stratifiable-mod-4
is also stratifiable-mod-2 we can assert in the language of TC2T that the yin

collection that would be the quartic Russell class {x : x 6∈4 x} exists. Ambiguity
for formulæ that are stratifiable-mod-4 would then say that the corresponding
yang set exists. See the discussion on page ??.

It might be an idea to write out a proof that the quartic Russell classes
{x : x 6∈4 x} cannot both exist.

If we are right about all ambiguityn schemes being of equal consistency
strength then it should be easy to prove the consistency of TCnT + Ambiguity
for formulæ that are stratifiable-mod-(m · n) relative to TCnT. Yeah right.

7.3 CO models for TCnT

It is simplicity itself to cook up a CO model of (the version of) TCnT that
corresponds to AST. (For definition of AST and more on CO models in general
see [8].) Let 〈IN, E〉 be the standard Oswald model. Define a new relation E′

on IN by

2nE′ (2m+ 1) iff nEm

and

(2n+ 1)E′ 2m iff nEm.

That way even numbers are yin and odd numbers are yang. I think the double
Russell class will turn out to contain precisely the wellfounded sets. . . but this
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will need to be checked. It’s clear how to do the same for TCnT for n > 2. You
partition IN into the n residue classes mod n and you say that i is a member of
j in the new sense if i+ 1 ≡ j mod n and (i DIV n) E (j DIV n).

Of course there is nothing special about E. We can do this for any Oswald
model at all.

What we might be able to do is get a model of the AST version of TC2T with
a Boffa antiatom in one lobe but not in the other. It might be an instructive
exercise to write this out in some detail.

We’ll have two copies of IN: yin naturals and yang naturals. And we’ll put a
Boffa antiatom into level yang but not into level yin. In n is a yin natural and
m a yang natural then we ordain than m is a member of n in the new sense iff
mE n, where E is the membership relation of the Oswald model. Membership
of yang naturals echoes the construction of CO models containing moieties. You
look at yang naturals mod 4: that is to say, peel off the two least significant
bits of a yang natural m and use them as a flag, which of course is 0, 1, 2 or 3.

If the flag is 0 then we say n belongs to m in the new sense iff the
nth bit of the truncation is 1;

If the flag is 1 then we say n belongs to m in the new sense iff the
nth bit of the truncation is 1;

If the flag is 2 then we say n belongs to m in the new sense iff (the
nth bit of the truncation is 1 iff n belongs to the complement of the
Boffa antiatom);

If the flag is 3 then we say n belongs to m in the new sense iff (the
nth bit of the truncation is 1 iff n belongs to the Boffa antiatom).

But questions of whether or not any given yin n belongs to the yang Boffa
antiatom are answered by examining whether the Boffa antiatom is a member
of n. And membership of yang sets in yin sets is unproblematic.

7.4 Generalise a Result of Specker?

Specker shows that in the situation where our language admits an automorphism
∗ of order 2, a conjunction of finitely many assertions of the form φ ←→ φ∗ is
another expression of that form. See Chad Brown’s discussion of this question.
Can we do anything similar here? Does it matter?

8 Applications to Duality

The special case of stratification-mod-n which will concern us here is n = 2.
The context throughout this section is NF.

DEFINITION 6 The dual φ̂ of a formula φ is the formula obtained from φ by
replacing all occurrences of ‘∈’ in φ by ‘6∈’.
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It has been known for some time that φ←→ φ̂ is a theorem of NF whenever
φ is a closed stratifiable formula. Permutation models can be found in which
φ←→ φ̂ fails for some unstratifiable φ, but it remains an open question whether
or not there are models in which φ←→ φ̂ holds for all φ. The natural conjecture
is that there should be such models.

We do not prove the full conjecture here but we can prove the relative con-
sistency of the scheme φ ←→ φ̂ at least for all φ that are stratifiable-mod-2.
This will be theorem 6 below, and it is the principal aim of this section to prove
it.

However, in preparation for theorem 6 we need to do a lot of bush-clearing
in regard to NF’s theory of permutations (and specifically involutions) of V ,
and this necessitates a few subsections of prolegomena.

First we reflect that the duality scheme might in principle be witnessed by
the existence of an antimorphism.

DEFINITION 7

An antimorphism is a permutation τ of V satisfying (∀x, y)(x ∈ y ←→
τ(x) 6∈ τ(y)).

An antimorphism that is an involution is a polarity.

Clearly if there is an antimorphism then duality follows.

8.1 Transversals, Partitions, Conjugacy and the Axiom of
Choice for sets of pairs

DEFINITION 8 A transversal for a disjoint family is a set that meets every
member of the family on a singleton.

Bowler [1] has found an injection i from the set of pairs into the set of
singletons: send {x, y} to {(x× y) ∪ (y × x)}. This enables us to infer (2) from
(1):

1. Every set of disjoint pairs has a choice function;

2. Every set of pairs has a choice function.

Let P be a set of pairs. We desire a choice function for it, but we know only
(1)—not (2). The set

{p× i(p) : p ∈ P}

is a family of disjoint pairs and therefore, by (1), has a choice function, f . We
can recover a choice function f∗ for P by f∗(p) =: fst(f(p× i(p))).

We will also need the equivalence of (3) and (4):

3. Every partition of V into pairs has a choice function;

4. Every set of disjoint pairs has a choice function.
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If we are given a set of pairs we can make disjoint copies of it by the trick we
used earlier. In fact—by using an i whose range is a moiety7 of singletons—we
can ensure that the sumset

⋃
P of the disjoint family P of pairs we construct

by this method has a complement that is the same size as V . The complement
V \

⋃
P therefore has a partition P′ into pairs. Then P ∪ P′ is a partition of V

into pairs. Any selection set for this partition will give us a choice function for
the partition we started with.

Two more propositions:

5. Whenever we partition V into pairs we get the same number of pairs;

6. Whenever we partition V into pairs the two partitions are conjugate.

It turns out that (6) is equivalent to AC2. (I mention 5 only as a foil, lest a
reader think i’m talking about 5 when i am in fact talking about 6).
• AC2 → 6
Suppose P1 and P2 are two partitions of V into pairs. By AC2 we have a

selection set S for P1 and P1 is obviously a bijection between S and V \ S. So
|S| = |V | and |P1| = T |V |. Naturally we argue for P2 in the same way. So there
is a bijection π between P1 and P2. For each p ∈ P1 there are precisely two
bijections between p and π(p) and we use AC2 to pick one. The union of all
such chosen bijections is a permutation conjugating P1 and P2.
• 6→ AC2.
Assume 6. If P is a partition of V into pairs then by 6 it will be conjugate

to the partition {{x, V \ x} : x ∈ V }. That is to say, there is a permutation π
of V such that, for all p ∈ P , π“p is a pair {x, V \ x}. But clearly the partition
{{x, V \ x} : x ∈ V } has a choice function f (“pick the element that contains
∅”) so the choice function for P that we want is p 7→ π−1(f(π“p)).

So we have established:

REMARK 8 The following are equivalent:
Every set of pairs has a choice function (AC2);
Every set of disjoint pairs has a choice function;
Any two partitions of V into pairs are conjugate;
Every partition of V into pairs has a choice function.

If we partition V into pairs how many do we get? No more than T |V | (by
this result of Bowler’s in [1]) but can we get fewer? We must try to connect this
with the question of whether or not |V | is decomposable.

DEFINITION 9 An involution with no fixed points and no transversal set is
bad.

The thinking behind this perjorative notation is that an involution without
fixed points is a partition of V into pairs and will have a transversal as long

7Moieties are supposed to be the same size as V

24



as AC2 holds. If there are bad involutions then AC2 fails. We will make much
use of the fact that an involution without fixed points can be thought of as a
partition of V into pairs.

I assume the reader can work out for themselves that every polarity is a bad
involution.

LEMMA 2 Any two involutions-without-fixed-points whose corresponding
partitions-of-V -into-pairs have transversals are conjugate.

Proof:
First we establish that if T is a transversal for a partition P of V into pairs

then its cardinality is |V |. Clearly |P| = T |T |, since we can send each piece of
P to the unique singleton ⊂ T that meets it. Observe that there is a bijection
between ι“V and P×{0, 1}, as follows. For each x there is a unique px ∈ P with
x ∈ px. If x ∈ P we send {x} to 〈px, 0〉; if x 6∈ P we send {x} to 〈px, 1〉.

Finally if π1 and π2 are two involutions-without-fixed-points equipped with
transversals T1 and T2, then not only do we have |T1| = |T2| = |V | but π1 and
π2 are conjugate, as follows. T1 and T2 are in bijection, by a map π∗, say. Any
such π∗ can be extended to a permutation π of the universe by adding all the
ordered pairs 〈π1(x), π2(π∗(x))〉 for x ∈ T1.

Some minor points:

(i) The proof of lemma 2 as given above tells us nothing about permuta-
tions that conjugate π1 and π2 beyond the fact that they exist. However the
construction is effective and can be mined for more information. In lemmas 3
and 8 we consider a particular case in which we need more information and we
go into more detail.

(ii) Notice that in lemma 2 the assumption on the two involutions is that
the corresponding partitions have transversals. It is not the weaker assumption
that the corresponding partitions are the same size. Might it be possible to
prove in NF that any two partitions of V into pairs are the same size. . . ? After
all—as mentioned above—Nathan Bowler [1] has shown us a proof in NF that
there are as many pairs as singletons.

Sadly no, not unless NF ` AC2.

REMARK 9 If whenever σ and τ are two involutions-without-fixpoints whose
two partitions of V into pairs are of the same cardinality then σ and τ are
conjugate, then AC2 follows.

Proof:
Let π be a set of pairs without a choice function. Without loss of generality

the pairs are disjoint. Take the disjoint union of
⋃
π with V . The result is

the same size as V and can be canonically split into pairs using c (on the copy
of V ) and π (on the copy of

⋃
π). Copy this over into a partition of V into

pairs. We have T |V |-many pairs, which is the same as the number of pairs in
the partition corresponding to c. So—if any two partitions of V into the same
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number of pairs are conjugate—then this π must have a choice function. But π
was arbitrary.

We now need Nathan Bowler’s fruitful idea of a universal involution. That
in turn relies on a notion of permutation morphism due to Bowler:

DEFINITION 10
For permutations σ and τ of sets X and Y , a map of permutations from σ
to τ is a function π : X → Y such that π · σ = τ · π.

If π is injective, we call it an embedding of permutations.
An involution is universal if every involution embeds into it.

We will write “σ ≤B τ .” to say that there is an embedding of permutations
from σ to τ .

In all the cases of interest to us we have X = Y but we shouldn’t forget that
Bowler’s definition is more general.

Think of a permutation as a digraph wherein every vertex has indegree
one and outdegree one, and loops at vertices are allowed. An embedding-of-
permutations must send n-cycles onto n-cycles, and when you look at it like
that the Cantor-Bernstein theorem becomes much more obvious.

For the moment we need definition 10 only for involutions, and we will speak
of involution-embeddings or embeddings of involutions. In due course we will
prove (lemma 4) that there are universal involutions, and give examples. We do
not address the question of whether there are permutations that are universal
for other classes of permutations, interesting tho’ that question is. It looks quite
hard.

[There is a case for a digression on this topic. There probably is a universal
permutation, and it has T |V | n cycles for every n (and T |V | infinite cycles too).
No coincidence that this is the type of jσ for σ any permutation with an infinite
cycle. Take a wee bit of time to think how much AC one needs to prove that
this cycle type has only one conjugacy class. It’s presumably the principle i
have elsewhere called GC.

This is probably also a theatre within which one can use the theorem of
Bowler-Forster [1] that if |X| = |X|2 then the symmetric group on X has no
normal subgroups of small index. So every permutation is a product of univer-
sal involutions, or of involutions from any congruence class, co’s each of these
congruency classes (presumably!) generate the whole group.]

We will need the following analogue of Cantor-Bernstein for embeddings-of-
permutations.

LEMMA 3 (Bowler)
If σ is a permutation of X and τ a permutation of Y with σ ≤ τ ≤ σ then

σ and τ are conjugate.

Proof: (Bowler, edited by tf)
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Suppose σ ≤ τ in virtue of ρ : X ↪→ Y and τ ≤ σ in virtue of π : Y ↪→ X.
Consider the map P(X) ↪→ P(X) defined by S 7→ X \ ρ“(Y \ π“S). By Tarski-
Knaster this map has a least fixed point, which we will call P . Then the map
X ↪→ Y given by π�P ∪ ρ−1 �X \ P conjugates σ to τ .

Notice that the map that conjugates σ and τ has a stratifiable definition in
terms of them, so if they are definable it is too, and so is its least fixed point.
It won’t matter that there is a least fixed point, but it will matter that there is
a fixed point that is definable in terms of ρ and π, and the lfp is one such.

In fact—for the moment—we will need lemma 3 only for involutions.

COROLLARY 1 Any two universal involutions of V are conjugate.

We observe without proof that if π is an embedding of permutations from σ
to τ then j(π) is an embedding of permutations from j(σ) to j(τ).

Lemma 3 is telling us that the intersection of the quasiorder ≤B and its
converse ≥B is the equivalence relation of conjugacy. This makes it sort-of
OK to abuse notation by additionally using ‘≤B ’ to denote the partial ordering
induced on the quotient. The quotient is a directed poset because of disjoint
unions of copies of V . Is it an upper semilattice? It certainly supports a +
operation, but whether or not [σ] + [τ ] is the sup of [σ] and [τ ] is another
matter!

The following elementary facts will loom large.

REMARK 10
(i) Conjugacy is a congruence relation for j;
(ii) j is ≤B-order-preserving.

Proof:
(i) is obvious (and skew-conjugacy, too, is a congruence relation for j, tho’

that is not as important here).
For (ii) Observe that if π is an embedding of permutations from σ to τ then

j(π) is an embedding of permutations from j(σ) to j(τ).

We will need this in the proof of the second part of lemma 4.

We begin by giving some examples of universal involutions of V .

LEMMA 4 (Bowler unpublished)
For all i, ji(c) is a universal involution.

Proof:
First we prove that j(c) is universal.
There are bijections V ←→ {x : ∅ 6∈ x}; in what follows fix θ to be one of

them—it won’t matter which.
For any involution σ of any set X we define an embedding of involutions π

from σ to j(c) by

27



x 7→ j(θ)(x) ∪ j(c · θ)(σ(x)).
The function π is injective, with left inverse y 7→ j(θ−1)({z ∈ y : ∅ 6∈ z}).
To see that π is a map of involutions from σ to j(c) we calculate as follows:

(1) (j(c) · π)(x) = j(c)(π(x)) Expand π(x) to get
(2) = j(c)[j(θ)(x) ∪ j(c · θ)(σ(x))] distribute jc over ∪ to get;
(3) = j(c)(j(θ)(x)) ∪ jc · j(c · θ)(σ(x))
(4) = j(c · θ)(x) ∪ j(c · c · θ)(σ(x))
(5) = j(c · θ)(x) ∪ j(θ)(σ(x)) reorder the set unions to get
(6) = (jθ)(σ(x)) ∪ j(c · θ)(x) which gives
(7) = (jθ)(σ(x)) ∪ j(c · θ)(σ(σ(x))) beco’s σ is an involution;
(8) = π(σ(x))

The fact that (6)→ (7) relies on σ being an involution promises to complicate
the endeavour to find universal permutations of other orders.

The reordering between (5) and (6) suggests that for permutations that are
universal for permutations of order n the corresponding π constructor will take
values that are unions of n terms.

For the main result we argue as follows.
Clearly any involution into which a universal involution can be embedded is

also universal, and any involution conjugate to a universal involution is again
universal.

Since j(c) is universal, there is an embedding of c into j(c). This lifts to
embeddings of ji(c) into ji+1(c), and composing these embeddings we get em-
beddings of j(c) into ji(c) for any i ≥ 1. Thus ji(c) is universal for any i ≥ 1.

(It might be an idea to properly write out a proof that j lifts in this way. We
should also check that j(c) and j2(c) are conjugate and do it by hand as it were,
so that we can tell whether or not they are conjugated by anything definable.)

So j(c) is a universal involution. In the medium term we are going to be
interested in the possibility of permutations that are universal for other classes
of permutations. For example (the simplest next case) is there a universal
permutation of order 3? It looks as if we’d have to have a particular candidate
in mind, and there is nothing obvious in the way j(c) was an obvious candidate
for a universal involution, j(c) is rather special beco’s it arises from the logic
rather than the set theory. There is nothing of three-character that arises from
the logic! I don’t think the prospects are good. There was no obvious reason
why there should be universal involution, tho’ there was an obvious thing to
try. Similarly there doesn’t seem to be any obvious reason why there should be
a universal permutation of order p, and nor is there an obvious suspect to try.

Every permutation is a product of involutions; is every permutation a prod-
ucts of universal involutions?

For the moment we record the following.
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REMARK 11 There is a universal involutions-without-fixpoints.

Proof:
Of course (as we have seen) if AC2 holds then there is a unique conjugacy

class of involutions-without-fixpoints: all involutions-without-fixpoints would
be universal. However we are not going to assume AC2. Recall that j(c) is a
universal involution. In particular, if π is an involution without fixpoints there is
a permutation-embedding from π into j(c), and any such embedding must send
π into that part of j(c) that consists of pairs not singletons. Let X be the union
of all the pairs in j(c) (j(c) tho’rt of as a set of pairs and singletons). It’s easy to
check that there are |V |-many sets that are not closed under complementation
(*) so X is the same size as V and that part of j(c) can be copied over to V to
give us a permutation τ of V that has no fixed points. And the construction of
τ ensures that π above embeds into it. And τ is definable!

For (*) reflect that {x : V ∈ x ∧ ∅ 6∈ x} is a subset of the collection of sets
not closed under complementation, so it will suffice to show that it is of size
|V |. But it’s a moiety of a moiety, in the sense that B(V ) is a moiety and
provably the same size as V , and its members fall into one two pieces depending
on whether or not they contain ∅, and these two pieces are of course the same
size as each other and the same size as V .

This merits some reflection. This τ gives us a definable partition of V into
pairs which is a kind of ε-object for bad pairs: if there any counterexamples to
AC2 then τ is one of them. I don’t think this is going to help us prove AC2, but
it is quite striking. I think the set {{x, c“x} : x 6= c“x} is another such. But
there’s no significance to that: the set of all pairs is another such. Duh.

[In the medium term we are going to be interested in finding automorphisms
thare are not involutions, that have other cycle types. The cycle types we have
to consider are actually quite special. Every automorphism is a fixed point for
j, and that tells us quite a lot about the cycle type. For any n, the number of
things belonging to n-cycles is either |V | or 0. If there is an n-cycle and m|n
then there is an m-cycle. For these purposes every natural number divides the
order of an infinite cycle. This give us ω+1 cycle types we have to worry about,
one for each cantorian natural and one for the presence of infinite cycles. We
are interested in “universal” permutations of these cycle types and not in any
other. It would be nice to show that each of these flavours has a “universal”
(top) type. There are some details to be nailed down about the cantorian nature
of all these cycles but that is for later.

Is there anything analogous one can say about the cycle types of antimor-
phisms?]

9 Working towards Antimorphisms

We start with the observation that no antimorphism can have any odd cycles.
One might think this is obvious but it isn’t. Things are complicated by the fact
that a cycle need not be cantorian!
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REMARK 12 No antimorphism can have an odd cycle.

Proof:
What one wants to say is this: suppose τ is an antimorphism and x belongs

to a (2n+ 1)−cycle. One then has

x ∈ x←→ τ2k+1(x) 6∈ τ2k+1(x),

so we cannot have τ2k+1(x) = x. Unfortunately the biconditional one obtains
is not that, but instead is

x ∈ x←→ τ2k+1(x) 6∈ τ2Tk+1(x).

However one can do the following. Suppose x belongs to an o-cycle (‘o’ for
‘odd’). We seek a natural number k such that k and Tk are both divisible by
o. We then have x ∈ x ←→ τk(x) 6∈ τTk(x). Now, since k and Tk are both
divisible by o, we have τk(x) = τTk(x) = x whence x ∈ x ←→ x 6∈ x and we
have the contradiction we desired. Q: But what is k? A: LCM(o, T−1o).

Two points:

(i) Notice that we have not assumed that τ is a set; so this holds for
external antimorphisms as well.

(ii) The proof we have given was complicated by the need to allow
for noncantorian cycles. Might it be possible to prove that any cycle
of an antimorphism is in fact cantorian? I suspect it is, but it might
be quite fiddly. Sounds as if we ought to be able to prove that any
cycle of an ∈-automorphism must be cantorian. . . . We do at least
know that the order of any ∈-automorphism is cantorian and every
set of ∈-automorphisms is stcan. .

Recalling that one of the aims of this investigation is to understand antimor-
phisms we remind ourselves that τ is an antimorphism iff τ = j(τ) · c. This fact
gives us an interest in permutations of the form jτ · c and, in particular, in how
the cycle type of τ controls the cycle type of jτ · c. It’s quite easy to see how
the cycle type of τ controls the cycle type of jτ . We remark (without proof for
the moment):

if τ has an n-cycle, jτ has a Tn-cycle;
if τ has infinite cycles, jτ has cycles of all sizes;
if τ has cycles of arbitrarily large finite sizes, then jτ has infinite
cycles;
if all τ -cycles have lengths in I ⊂ IN with I finite then, for n large
enough, jnτ has cycles of all sizes that divide LCM(I). (With a few
‘T ’s scattered around)
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How many fixed points does jτ have? Clearly j of a transposition (a, b)
has |V |-many fixed points (every subset of V \ {a, b} is fixed). If τ is a bad
involution, how many fixed points hath jτ?

. . . jτ · c is a lot harder. Lemma 5 is a taster.

LEMMA 5 AC2 implies that, for all permutations τ , jτ · c has fixed points iff
τ has no odd cycles.

Proof:

R → L

Suppose X is a fixed point for jτ · c. Then, for each τ -cycle C, we must have
τ“(X ∩ C) = C \X and that means that |C| must be even (or infinite). This
direction does not need AC2.

L → R

This direction needs AC2. Suppose τ has no odd cycles. Each τ -cycle splits
into precisely two τ2 cycles. Use AC2 to pick, for each τ -cycle, one of the two
τ2-cycles into which it splits. The union of the set of chosen τ2-cycles is a fixed
point for jτ · c.

The converse is true too. Suppose τ is a permutation with no odd cycles,
and assume the consequent. Then jτ · c has a fixed point. τ itself of course has
no fixed point. The fixed point for jτ · c is a transversal for τ !

Another fairly easy observation in the thread of cycle-type-of-τ -controlling-
cycle-type-of-jτ · c is that. . .

REMARK 13

(1) If τ is of order 2n then jτ · c is of order T2n;
(2) If τ is of order 2n+ 1 then jτ · c is of order T4n+ 2;
(3) If τ has a Z-cycle then so does jτ · c.

Proof:
It’s obvious that if τ is of order n then jτ is of order Tn, but composing

with c embroils us in slightly more work.
(1) Suppose τ is of order 2n. c commutes with jτ , so in (jτ · c)T2n we can

rearrange to make all the cs adjacent and all the jτ adjacent so they all cancel.

(2) What if the order of τ is odd? A similar calculation shows that if τ
is of order 2n+ 1 then (jτ · c)T2n+1 becomes, with rearrangement-followed-by-
cancellation, (jτ)T2n+1 · c = j(τ2n+1) · c = 11 · c = c. This is not the identity!
However, its square is.

(3) Let x belong to a τ Z-cycle and consider {x}.
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Of some interest will be the sequence of permutations: 11, c, jc ·c, j2c ·jc ·c
. . . , where c is the complementation permutation. The superscripts are all small
(they are all concrete numerals, in fact), so—rather than persist with the more
general but slightly unwieldy H(c, i) notation of [4] introduced above—we will
revert to the simpler (original) notation of Henson, in which these permutations
are written ‘ci’, thus: c1 := c; ci+1 := j(ci) · c.

Suppose AC2 fails, so that there are (“bad”) involutions with neither fixed
points nor transversals. If τ is a bad involution then, by remark 15, jτ · c has no
fixed points. (It might have a transversal and not be bad. . . ). And, if there are
bad involutions, then any involution that is maximal among involutions without
fixed points will be bad.

What we might be able to do is this: If AC2 fails then there is a bad
involution, so any involution that is universal for involutions-without-fixpoints
(uiwf) is bad. So all we need to show is that if τ is uiwf then jτ · c is uiwf.
The operation τ 7→ jτ · c respects conjugacy. (I don’t think it is ≤B-monotone).
Certainly if π−1τπ = σ then (jπ)−1(jτ) · c · (jπ) = (jσ) · c. That doesn’t sound
obviously impossible. If τ has no fixed points and no transversals then jτ · c has
no fixed points (any fixed point would be a transversal for τ). It is true that
there doesn’t seem to be anything to prevent c ·jτ having a transversal, so there
is work to do. The point of all this, of course, is that if there is a uiwf τ s.t.
c · jτ is also uiwf then we get a permutation model containing an antimorphism.
It a classic fixed-point-for-a-tro-obtained-by-permutations–situation.

Recall that we use lower-case fraktur characters for variables ranging over
conjugacy classes.

Consider the poset 〈P,≤B〉 of conjugacy classes of involutions-without-
fixpoints. It is closed under j (which is order-preserving) and σ 7→ jσ · c (which
isn’t). It has a top element which is the conjugacy class of universal involu-
tions; call it c1. There are also (i) the conjugacy class (call it c3) of universal
involutions-without-fixpoints, and (iii) the conjugacy class of the involutions
that have a transversal, call it c2. Evidently c2 ≤B c3. AC2 is simply the as-
sertion that c3 = c2. And if they are the same then there is only one conjugacy
class of involutions-without-transversals. And that’s an iff. What happens if
AC2 fails? Then there is more than one conjugacy class. Can we prove that c2
is always the bottom element? If there are involutions-without-fixpoints that
have fewer than T |V | pairs (and there might be, for all i know) then the answer
would be: no!

If AC2 fails then the congruence class c1 of universal involutions consists of
bad involutions, and there is the ≤B-minimal class c2 which consists of good
permutations. In fact it’s the equivalence class of c1—in fact the equivalence
class of all cs with odd subscripts. And it’s a consequence of corollary 3 that
the conjugacy class c1 of universal involutions contains all the cs with even
subscripts. π 7→ jπ · c swaps you back and forth between these two conjugacy
classes. (This is how we know that π 7→ jπ ·c is not ≤B-order-preserving). Thus,
among the conjugacy classes of involutions we find the conjugacy class of the c2n
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(which is maximum) and the conjugacy class of the c2n+1 (which is minimal).
c2 is ≤B-minimal but perhaps not minimum, since—for all we know—if AC2

fails there may be involutions without fixpoints whose corresponding partitions
are smaller than ι“V . Indeed, to the best of my knowledge, no-one has ever
proved that V is not the union of a wellordered(!) family of finite sets. So we
should not expect to be able easily to exclude the possibility of partitioning V
into fewer than T |V | pairs.
〈P,≤B〉 admits a + operation, arising from disjoint union. Is it the join in

the sense of the poset? Well, it will be if |V | is indecomposible. But is it? What
happens if a + a = a?

Consider the class BINV of those involutions that are universal or lack fixed
points. BINV is closed under σ 7→ jσ · c, which makes it the correct place to
search for fixpoints for σ 7→ jσ · c. We need a name for this function whose
fixed points are antimorphisms. Is BINV the correct thing to examine? Or its
conjugacy classes? Or perhaps its conjugacy classes in J1?? The point being
that if jσ · c and jτ · c are J1-conjugate then σ and τ are J0-conjugate.

In fact this setting seems to be one in which various old festering problems
appear and can perhaps be partially processed. Among the bad involutions
are there any which have fewer than T |V | pairs? Call such a permutation
small bad. If there are any, is the collection of conjugacy classes of small bad
permutations closed under +? This is related to the question of whether or not
|V | is decomposible. Clearly if σ and τ are both bad, so is σ t τ . But if |V | is
indecomposible, then if |σt τ | = T |V |, one of σ and τ must also be of size T |V |.
So might there be a universal small bad permutation?

Let us write ‘J0’ for the symmetric group on V , and J1 for j“J0 (and so on).
Thus the triviality is that c is in the centraliser CJ0(J1) of J1 in J0. There is
slightly more one can say about this that may be worth recording here.

REMARK 14

CJ0(J1) ⊆ {σ : (∀x)(σ(x) = x ∨ σ(x) = V \ x)} ⊆ CJ0({c, 11V })8.

Proof: First inclusion:

Suppose σ ∈ CJ0(J1). Let τ be any permutation whatever. Then

τ“σ(x) = σ(x)

iff (commutativity)
σ(τ“x) = σ(x)

8Actually one can spice this up quite a lot, by reflecting that the centraliser function is
antimonotonic, so one can whack ‘C()’ in front of each of these and then reverse all the arrows.
I was sure i had written this out somewhere but i can’t find it.
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iff (because σ is a permutation)

τ“x = x

So τ fixes σ(x) setwise iff it fixes x setwise. But τ was arbitrary. It
follows easily9 that σ(x) must be x or V \ x.

Second inclusion:

Assume (∀x)(π(x) = x ∨ π(x) = c(x)). We will show that π ∈
CJ0({c, 11V }).
If π(x) = c(x) then π · c(x) = x so c · π(x) = π · c(x) = x.

If π(x) = x then π · c(x) = c(x) so c · π(x) = c(x) = π · c(x).

Both these inclusions are proper:
∏
x∈ι“V

(x, V \ x) is a counterexample to the

converse of the first inclusion. The second inclusion cannot be reversed because
J1 ⊆ CJ0({c, 11V }).

Note that (∃σ)(y = σ“x) is an equivalence relation. Let us write it ∼1, and
let us write the equivalence class of x under ∼1 (the orbit of x under J1) as
[x]. What we have shown is that, for each π ∈ CJ0(J1) and for each x, π must
either fix all members of [x] or send them all to their complements. That is, we
can code members of CJ0(J1) by the equivalence classes whose members they
fix. If we now identify [x] and [V \ x] by ≈ we see that CJ0(J1) is precisely the
additive part of the boolean ring on (V/∼1)/≈.

I think i can prove that CJ0({σ : (∀x)(σ(x) = x ∨ σ(x) = V \x)}) = {c, 11V }.
The L-to-R inclusion is obvious.

Suppose a 6= b 6= (V \ a) and suppose σ is in the centraliser and sends a to
b. Then it doesn’t commute with the transposition (a, V \ a).

Much of what we say below about c goes for any member of CJ0(J1).

LEMMA 6
(i) All the ci are involutions;
(ii) All the ci commute with each other.

Proof:

(i) We prove this by induction on i. Suppose ci is an involution. ci+1 = jci ·c.
So (ci+1)2 = (jci ·c)2 = jci ·c · jci ·c. Now by the key triviality we can rearrange
to jci · jci · c · c = 11.

In fact this even shows that all products of the ci are involutions.

(ii) We prove by induction on i that, for all j, ci commutes with cj .

9I suspect the proof that i am eliding is not constructively correct.
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Case i = 0. c0 = c and c commutes with j(π) for all π. But every cj is
j(π) · c for some π, and (compose with c on the right) j(π) · c · c = j(π) and if
we compose with c on the left we get c · j(π) · c which, too, is j(π) because c
commutes with j(π).

Now for the induction.

ci+1 · cj = j(ci) · c · j(cj−1) · c

and the RHS simplifies to
j(ci) · j(cj−1)

which is
j(ci · cj−1)

which by induction hypothesis is

j(cj−1 · ci)

which is
j(cj−1) · j(ci).

We now sprinkle a couple of cs judiciously—by the triviality we know can insert
them anywhere—obtaining

j(cj−1) · c · j(ci) · c

which is of course
cj · ci+1.

REMARK 15
Let σ and τ be involutions of V .

(1) Let τ be an involution without fixpoints. Then T is a transversal
for τ iff T is a fixpoint for jτ · c;

(2) T is a fixpoint for σ iff B(T ) is a transversal for jσ · c.

Proof:
(1) Think of τ as a partition of V into pairs. Then, if T is a transversal,

V \ T (which is also a transversal) is precisely τ“T .

(2) A piece of [the partition] jσ · c is a pair {x, V \ σ“x}—which of course
might be a singleton. If σ(T ) = T then, for all x, precisely one of x and V \σ“x
will contain T . That is to say, {x, V \ σ“x} ∩B(T ) is a singleton, so B(T ) is a
transversal.

For the other direction . . . if B(T ) is a transversal for jσ · c then, for all x,
precisely one of x and V \ σ“x contains T , which is to say that T ∈ x ←→
σ(T ) ∈ x. In particular let x be {T }; then T ∈ {T } ←→ σ(T ) ∈ {T }, so
σ(T ) = T .

I thought this corollary followed but it doesn’t. Error Alert!
This is not a
corrollary
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COROLLARY 2
τ is bad iff jτ · c is bad.

Proof:
L → R: jτ · c bad implies τ bad:
Suppose jτ · c is bad. Then it has no transversals. In particular for no T is

B(T ) a transversal, so for no T is T a fixpoint for τ .
Suppose jτ · c is bad. Then it has no fixpoints. So τ has no transversals.

R → L: Now for τ bad implies jτ · c bad.
τ has no fixpoint so jτ · c has no transversal10.
τ has no transversal. Suppose, per impossibile, that jτ · c has a fixpoint, x.

Then x = V \ τ“x which says that x is a transversal for τ .

The gap could be plugged if there were a way of constructing a fixpoint for
an involution τ from a transversal for jτ · c.

The following corollary seems quite striking, but it hasn’t borne any fruit
just yet.

COROLLARY 3
(i) For any ultrafilter U on V , Bn(U) is a transversal for c2n+1;
(ii) All the c2n+1 are conjugate;
(iii) For all n ≥ 1, cn is conjugate to cn+2.

Proof:
(i) We do an induction on n. For the case n = 0 any ultrafilter is a transversal

for c.
Suppose for the induction that Bn−1(U) is a transversal for c2n−1.
Consider

c2n+1(A) ∈ Bn(U).

By definition of B this is the same as

Bn−1(U) ∈ c2n+1(A)

Now c2n+1(A) = V \ (c2n“A), so we can rewrite the displayed formula as

c2n(Bn−1(U)) 6∈ A.

By induction hypothesis Bn−1(U) is a transversal for c2n−1, which is to say that
Bn−1(U) is a fixed point for c2n. So rewrite ‘c2n(Bn−1(U))’ as ‘Bn−1(U)’; this
turns our formula-in-hand into

Bn−1(U) 6∈ A

which (by definition of B) becomes

A 6∈ Bn(U).

10No! It might have transversals that aren’t B of any fixpoint for τ
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So we have proved

c2n+1(A) ∈ Bn(U)←→ A 6∈ Bn(U)

. . . which is to say that Bn(U) is a transversal for c2n+1.

(ii) now follows by lemma 2.

(iii) By induction on n.

The case n = 1 we know from (ii).
For the induction step suppose π conjugates cn to cn+2, which is to say

π · cn · π−1 = cn+2

Lift by j:
jπ · j(cn) · (jπ)−1 = j(cn+2)

compose both sides with c on the right:

jπ · j(cn) · (jπ)−1 · c = j(cn+2) · c

But c commutes with (jπ)−1 so we can rearrange the LHS, and j(cn+2)·c = cn+3

on the RHS giving
jπ · j(cn) · c · (jπ)−1 = cn+3

Now j(cn) · c (underlined) = cn+1 giving

jπ · cn+1 · (jπ)−1 = cn+3

as desired.

Also worth minuting is the fact that

REMARK 16 Conjugacy is a congruence relation for the operation π 7→ jπ ·c.

Proof:
Suppose σ and τ are conjugate; so, for some π,

π · σ · π−1 = τ ; Then whack it with j:
j(π) · j(σ) · j(π−1) = j(τ); compose with c:
j(π) · j(σ) · j(π−1) · c = j(τ) · c; but c commutes with j of anything, giving:
j(π) · j(σ) · c · j(π−1) = j(τ) · c

which says that j(σ) · c and j(τ) · c are conjugate.

Notice that in this construction j(σ) · c and j(τ) · c end up being conjugated
by j of something, which is (presumably, demonstrably?) a stronger condition
than simply being conjugate. There seems to be no obvious reason why the
induced function [σ] 7→ [jσ · c] on conjugacy classes should be injective. I think we

prove it isn’t
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LEMMA 7 (Bowler) c2 is conjugate to j(c) and so is also universal.

Proof: duplication. . . ??
Given a set of the form x4B(∅) we can recover x since it is

(x4B(∅))4B(∅). So x 7→ x4B(∅) is injective. But the same thought re-
assures us that it is surjective too, so it is genuinely a permutation of V and,
actually, an involution. In fact we can write it

∏
x∈V (x, x4B(∅)) as a product

of disjoint transpositions . . . or π for short. To see that π conjugates c2 to j(c),
we calculate as follows:

(j(c) · π)(x) = j(c)(x4B(∅))
= j(c)(x)4 j(c)(B(∅))
= j(c)(x)4 (V \B(∅))
= j(c)(x)4 (V 4B(∅))
= (j(c)(x)4V )4B(∅)
= (V \ j(c)(x))4B(∅)
= (c · j(c))(x)4B(∅)
= c2(x)4B(∅)
= (π · c2)(x)

COROLLARY 4 Every model of NF has a permutation model with an internal
∈-automorphism.

Proof: It follows from corollary 1 that j(c) and j2(c) are conjugate, making j(c)
an example of a permutation which is conjugate to j of itself. It was shown in
[6] that any model containing such a permutation π has a permutation model
wherein π has become an (internal) ∈-automorphism.

In [6] it is shown that there must be such a π, but that was on the assumption
of AC2, and of course we have here scrupulously eschewed AC2.

Zuhair Abdul Ghafoor Al-Johar has asked me whether the automorphism
obtained in this way moves any wellfounded set. Thinking about it for a bit
the answer is of course ‘no’. For any automorphism σ the set {x : σ(x) = x} is
indeed a set and it extends its own power set, so—by induction—it copntains
all wellfounded sets.

For the main result which follows later (corollary 6) we will need involutions
σ and τ such that there is a permutation π conjugating σ to j(τ) · c and τ to
j(σ) · c. The next lemma exhibits such a pair of involutions, taking σ to be c1
and τ to be c2.

delete from here (?)

LEMMA 8 There is an involution that conjugates c with c3 and commutes with
c2.
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Proof:
We begin by choosing a fixed point a of c2 and setting b = c1(a). Since a is

a fixed point of c2 we also have b = c1(c2(a)) = j(c)(a). For any s ⊆ {a, b} we
define Xs to be {x : x ∩ {a, b} = s}.

X∅ is closed under both j(c) and j2(c); let σ∅ be the restriction of j(c) to X∅
and τ∅ the restriction of j2(c). Then there are embeddings of j(c) into σ∅ and
j2(c) into τ∅, so by the results of the last section both σ∅ and τ∅ are universal.
Let π∅ be an isomorphism from σ∅ to τ∅. Since j(c) = c1 · c2 and j2(c) = c3 · c2
we have the equation π1 · c1 · c2 = c3 · c2 · π1, which we note for future use.

We now define π : V → V by

x 7→


π∅(x) if x ∩ {a, b} = ∅
x if x ∩ {a, b} = {b}
c3(c1(x)) if x ∩ {a, b} = {a}
c3(π∅(c1(x))) if x ∩ {a, b} = {a, b}

Then π is a union of bijections from Xs to Xs for each s ⊆ {a, b}, so it is a
bijection.

It remains to check that for any x we have π(c1(x)) = c3(π(x)) and
π(c2(x)) = c2(π(x)). For each equation there are 4 cases, depending on x∩{a, b}.
We now check these cases for the first equation.

• If x ∩ {a, b} = ∅, then c1(x) ∩ {a, b} = {a, b} and so

π(c1(x)) = c3(π∅(c1(c1(x)))) = c3(π∅(x)) = c3(π(x)) .

• If x ∩ {a, b} = {b} then c1(x) ∩ {a, b} = {a} and so

π(c1(x)) = c3(c1(c1(x))) = c3(x) = c3(π(x)) .

• If x ∩ {a, b} = {a} then c1(x) ∩ {a, b} = {b} and so

π(c1(x)) = c1(x) = c3(c3(c1(x))) = c3(π(x)) .

• If x ∩ {a, b} = {a, b} then c1(x) ∩ {a, b} = ∅ and so

π(c1(x)) = π∅(c1(x)) = c3(c3(π∅(c1(x)))) = c3(π(x)) .

The four cases for the other equation are similar.

• If x ∩ {a, b} = ∅ then c2(x) ∩ {a, b} = {a, b} and so

π(c2(x)) = c3(π∅(c1(c2(x)))) = c3(c3(c2(π∅(x)))) = c2(π∅(x)) = c2(π(x)) .

• If x ∩ {a, b} = {b} then c2(x) ∩ {a, b} = {b} and so

π(c2(x)) = c2(x) = c2(π(x)) .

• If x ∩ {a, b} = {a} then c2(x) ∩ {a, b} = {a} and so

π(c2(x)) = c3(c1(c2(x)))) = c2(c3(c1(x))) = c2(π(x)) .
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• If x ∩ {a, b} = {a, b} then c2(x) ∩ {a, b} = ∅ and so

π(c2(x)) = π∅(c2(x)) = π∅(c2(c1(c1(x)))) = c2(c3(π∅(c1(x)))) = c2(π(x)) .

9.1 Finding Permutations that will prove Duality2

LEMMA 9 (Bowler)
There is an involution that conjugates c with c3 and commutes with j2c · jc.

Proof:
The universe partitions naturally into bundles closed under both c1 and c3.

Each such bundle contains precisely four sets. We will define a permutation π
in such a way that it fixes each bundle setwise. It will turn out that the π we
define is the permutation we seek.

x j2c · jc · c(x) c(x) j2c · jc(x)

x c(x) j2c · jc · c(x) j2c · jc(x)

c3

c

In the accompanying picture we have written a typical bundle twice: once
below the line where it is divided into two c-cycles and once above the line where
it is divided into two c3-cycles. We have to biject the set of points below the line
with the set of points above the line in a way that respects the two partitions
into cycles. Evidently this can be done (in eight different ways, as it happens)
so we pick one such way for each bundle. By corollary 3 (i) we have transversals
for c3 and c. The transversal for c3 highlights precisely one element in each
pair upstairs, namely that element that contains B(∅). These two highlighted
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elements cannot—downstairs—belong to different pairs because the downstairs
pairs are complements and two complementary sets cannot both contain B(∅).

To illustrate, suppose in the picture that upstairs we highlight x and (there-
fore) j2c · jc(x). We tell π to fix these two sets, and that compels it to swap
c(x) and c3(x).

The other possibility is that we highlight c3(x) and c(x), and then we tell π
to fix those two sets and to swap x and j2c · jc(x).

Either way the net result is that π is

if B(∅) ∈ x then x else j2c · jc(x).

Reflect that B(∅) ∈ x iff B(∅) ∈ j2c · jc(x), and j2c · c is an involution.
So, if B(∅) ∈ x, it follows that π(x) = x and then π2(x) = x; if B(∅) 6∈ x then
π(x) = j2c·jc(x) which does not contain B(x) either. So π2(x) = π(j2c·jc(x)) =
j2c · jc · j2c · (x) = x and π2(x) = x. So π is an involution.

Let us check that π commutes with j2c · jc, that is to say: j2c · jc · π(x) =
π · j2c · jc(x) for all x.

There are two cases, depending on whether or not B(∅) ∈ x.

If B(∅) ∈ x then π(x) = x and j2c · jc · π(x) = j2c · jc(x).

If B(∅) ∈ x then B(∅) ∈ j2c · jc(x) so j2c · jc(x) is fixed by π.

Either way j2c · jc · π(x) = π · j2c(x) = π · j2c · jc(x)

If B(∅) 6∈ x then π(x) = j2c · jc(x). Then j2c · jc · π(x) = x.

If B(∅) 6∈ x then B(∅) 6∈ j2c · jc(x) so j2c · jc(x) is moved by π, and
must be x.

Either way j2c · jc · π(x) = x = π · j2c · jc(x)

Presumably there is a generalisation that says that there is an involution that
conjugates ci with ci+2 and commutes with ji+2c ·ji+1c. But—presumably—we
are not going to need it.

However i think this is completely general. Is it not the case that, in any
symmetric group, if σ and τ are conjugate, then they can be conjugated by
something that commutes with στ? Something like that must be true...

COROLLARY 5
Every model of NF has a permutation model that contains two (internal) permu-
tations σ and τ satisfying (∀xy)(x ∈ y ←→ σ(x) 6∈ τ(y)) and (∀xy)(x ∈ y ←→
τ(x) 6∈ σ(y)).

Furthermore any such model satisfies duality for formulæ that are stratifiable-
mod-2.

Proof: We use the permutation π from lemma 8, and exploit the two permuta-
tions σ and τ that we find in the permutation model V π.
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If a formula φ is stratifiable-mod-2 then its variables can be assigned to two
types yin and yang in such a way that in subformulæ like ‘x = y’ the two
variables receive the same type and in subformulæ like ‘x ∈ y’ the two variables
receive different types. Let us associate σ to variables given type yin in the
assignment and associate τ to variables given type yang in the assignment.
‘x ∈ y’ is equivalent to ‘σ(x) 6∈ τ(y)’ and if x is of type yin we make this
replacement. ‘x ∈ y’ is also equivalent to ‘τ(x) 6∈ σ(y)’ and if x is of type
yang we make this replacement. We deal with equations analogously. In the
rewritten version of φ we find that every variable ‘x’ of type yin now appears
only as ‘σ(x)’ and that every variable ‘y’ of type yang now appears only as

‘τ(y)’. So we can reletter ‘σ(x)’ as ‘x’, and ‘τ(y)’ as ‘y’ and the result is φ̂.

There is a further corollary: no homogeneous formula φ(x1, x2) can define
a BFEXT (a well-founded extensional binary relation) on V . Given a definable
well-founded extensional binary relation on V we can argue as follows. Let
σ be an permutation, assumed to be an ∈-automorphism. We then prove by
wellfounded induction on φ that σ is the identity.

Actually we have to be very careful how we state this . . .

First we prove that if there is a definable wellfounded extensional relation
on the whole of V then there are no nontrivial ∈-automorphisms.

Suppose σ is an ∈-automorphism, and that φ(x, y) defines a wellfounded
extensional relation on the whole of V . Fix y and suppose (∀x)(φ(x, y) → x =
σ(x)). Then (∀x)(φ(x, y) ←→ φ(x, σ(y)) whence y = σ(y) by extensionality.
Then if {y : y 6= σ(y)} is nonempty it has no φ-minimal element, contradicting
wellfoundedness of φ.

We plan next to exploit corollary 4. The obvious thing to do is to say:
suppose φ defines a wellfounded extensional binary relation on V ; jump into a
permutation model containing a nontrivial ∈-automorphism to prove that it’s
not a wellfounded extensional binary relation. However for that to work we
need the expression “φ defines a wellfounded extensional binary relation on V ”
to be stratified, and for that we need φ to be stratified. It doesn’t have to be
homogeneous, but it does have to be stratified.

to here?

Some questions

Under what operations is the class of universal involutions closed?
Are the universal involutions a normal generating subset of J0?
Are there maximal permutations? We could start by asking for a maximal

permutation of order 3.

COROLLARY 6 Every model of NF has a permutation model that satisfies
duality for formulæ that are stratifiable-mod-2.
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It’s worth bearing in mind that σ and τ retain in V π all the stratified prop-
erties they had in their previous life in V , where they were c and c2. Thus they
commute, and σ2 = τ2 = 11. Observe also that

j(στ) = jσ · jτ = τ · c · c · σ = τσ = στ,

so στ is actually an ∈-automorphism of V π. It is a nontrivial automorphism
beco’s σ and τ are not inverse to each other: τ has fixed points and σ does not.
By the remark in the proof of part (i) of lemma 6 στ is an involution.

This fact is worth recording!

COROLLARY 7 Every model of NF has a permutation model containing a
nontrivial automorphism of order 2.

We should be able to express this as a fact inside the base model. . .

Can we use this technique to obtain models in which duality holds for for-
mulæ that are stratifiable-mod-p for other primes? If we were to rejig the above
development to seek a proof for formulæ that are stratifiable-mod-3 then we
would be looking for an antimorphism tuple (in this case triple) σ, τ , π such
that there is θ satisfying

(jσ · c)θ = τ , (jτ · c)θ = π and (jπ · c)θ = σ.

However, as Nathan Bowler has reminded me, the existence of such a triple
contradicts AC2 since τ has an odd cycle iff jτ · c does not. (That was lemma
5.) And if we are going to ditch AC2 then we may as well go for outright
antimorphisms from day 1.

9.2 Full Duality?

It may be that the set of things fixed by στ is a model of NF + full Duality.
Something to check!

First we check that στ (which is the same as τσ) is an ∈-automorphism. For
all x and y we have x ∈ y ←→ σ(x) 6∈ τ(y) so σ(x) 6∈ τ(y)←→ τσ(x) ∈ στ(y) =
τσ(y) so τσ is an ∈-automorphism as desired.

Next we check that if π is an ∈-automorphism then the set of fixed points is
a model of NF. The big gap here is extensionality. We would have to show that
every nonempty fixed set has a fixed member.

Finally we check that the set of fixed points of στ is additionally a model
of duality. Observe that, for all such fixed x we have x = σ(τ(x)) whence
σ−1(x) = τ(x). But σ2 = 11 so σ(x) = τ(x).

Now suppose x and y both fixed. Then x ∈ y ←→ σ(x) 6∈ τ(y) = σ(y). So
σ is an antimorphism of the fixed points.

But this relies on the set of fixed points being extensional. It may be that
we can ensure this by a judicious choice of the permutation in lemma 8. We
seek a π that conjugates c to j2c · jc · c and moreover has the extra feature that
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in V π the set {x : σ(x) = τ(x)} is extensional. Must turn this into a condition
on π. . . . We think

V π |= (∀x)(x 6= ∅ ∧ στ(x) = x→ (∃y ∈ x)(στ(y) = y))

is
(∀x)(π(x) 6= ∅ ∧ στ(x) = x→ (∃y ∈ π(x))(στ(y) = y))

which becomes

(∀x)(x 6= ∅ ∧ j2c · jc(x) = x→ (∃y ∈ π(x))(j2c · jc(y) = y))

where π conjugates c and j2c · jc · c.
Let us write ‘F ’ for {x : x = jc · j2c(x)} to keep things readable. The

π we seek has got to inject F into {y : y ∩ F 6= ∅}—o/w known (see p. 7)
as “

P
(F )”. Observe that

P
(x) is always a moiety, since it is V \ (P(V \ x)),

and the complement of a power set (of anything other than V ) is always the
same size as V . This is beco’s every set (other than V itself) is included in the
complement of a singleton, and the power set of a complement of a singleton is
a principal prime ideal and therefore a moiety.

So there’s no problem on that score.
It’s not blindingly obvious to me that it cannot be done.

9.3 Refuting duality

The Lads said:

First: Add a Quine atom by τ = (∅, {∅});
Second: Kill off all Quine atoms by τ =

∏
x∈ι2“V

(x, V \ x).

Now it should be possible to do it with a single permutation. I think the idea
is to swap with their complements-in-the-sense-of-(∅, {∅}), all those sets that are
double singletons in the sense of V (∅,{∅}). That is to say—writing ‘σ’ for the
transposition (∅, {∅}) and ‘c’ for complementation to keep things readable:

τ :=
∏

(x∈ι2“V )σ

(x, σcσ(x))

is the one-stop permutation we want. (The fact that this definition is legitimate
is nontrivial: it’s a great help that σcσ is an involution. We also need the
fact that if x is a double-singleton-in-the-sense-of-σ then its complement-in-the-
sense-of-σ cannot be a double-singleton-in-the-sense-of-σ. This ensures that all
the transpositions in the big product are disjoint.)

THEOREM 1
Duality fails in V τ because it contains a Quine antiatom but no Quine atom.
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Proof: Clearly the collection A := {x : ((∃z)(x = {{z}}))σ)} is going to be of
interest. Let’s process ‘(x ∈ ι2“V )σ’.

(x ∈ ι2“V )σ

is
(∃z)(x = {{z}})σ

which is
(∃z)(σ“(σ(x)) = {{z}})

which is
(∃z)(σ(x) = σ“{{z}})

which is
(∃z)(σ(x) = {σ{z}}).

Two things to notice

1. Since every Quine atom is fixed by σ every Quine atom belongs to A.
Everything that starts life as a Quine atom is moved.

2. Notice too that if x = ∅ then it belongs to A: σ(∅) = {∅} = {σ{∅}}.

So what is the fate of ∅ in the new model V τ? (Let’s call it ‘a’ in order not
to confuse ourselves!)

(x ∈ a)τ

iff
x ∈ τ(a)

Now τ(a) is the complement-in-the-sense-of-V σ of a which is σcσ(a) = σc{∅} =
σ(V \ {∅}) = V \ {∅}.

iff
x ∈ (V \ {∅})

iff
x 6∈ {∅}

iff
x 6= ∅

iff
x 6= a

So a is a Quine antiatom in the new model V τ .
Now let’s check that there are no Quine atoms in the new model V τ .
Suppose x is a Quine atom in the sense of V τ . If x is fixed by τ then it was

a Quine atom in the model in which we started. We observed earlier (item 2
p 45) that any object that starts life as a Quine atom is moved by τ . So x is
moved. So (x is a Quine atom)τ is
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(∀y)(y = x←→ y ∈ σcσx)

We need not consider the case where x = ∅, since we have already dealt with
that and seen that x is a Quine antiatom. If x = {∅} then the RHS becomes
y ∈ σcσ{∅} = V which is clearly not equivalent to the LHS; clearly {∅} is not a
Quine atom in V τ .

There remain the cases where x is fixed by σ. These give

(∀y)(y = x←→ y ∈ σ(V \ x))

For x to be a Quine atom in V τ , σ(V \ x) will have to be a singleton. This
can happen if x = V , for then V \ x is empty and σ(V \ x) is {∅} so x would
have to be both V and ∅, so the case x = V does not give rise to a Quine atom.
The only other way for σ(V \ x) to be a singleton is for V \ x to be a singleton,
say {z} and for it to be fixed by σ. In that case the condition for (x is a Quine
atom)τ becomes

(∀y)(y = x←→ y ∈ V \ {z}))

which is clearly impossible.

In contrast, we have not yet found a permutation model that satisfies duality.

10 Work still to do

There remains of course the challenge of proving consistency of duality for all
sentences, not merely those that are stratifiable-mod-2. But more to the point
are the possibilities of extending to formulæ that are stratifiable-mod-n things
known about the rather more restricted class of stratified formulæ—and these
we haven’t started thinking about. Here are some, in no particular order.

We should show in an NF context that, for each n, the assertion that “there
are sets x s.t. ιn �x exists” is invariant.

• Is there any interest in versions of Forti-Honsell Antifoundation along the
lines “Every set picture that is a n-stratification graph is a picture of a set”?

• If φ is, for each n, equivalent (modulo NF) to something that is stratified-
mod-n must it be (NF)-invariant?

I briefly thought i had a counterexample, on the grounds that
“∃Vω’ is, for each n, equivalent to
“The least fixpoint for x 7→ (Pℵ0)n(x) exists”
and that last assertion is stratifiable-mod-n. So it ought to be invariant, but

it isn’t, beco’s of Holmes’ clever permutation.
However, the least fixpoint for x 7→ (Pℵ0)n(x) isn’t Vω. It’s the set of sets

of rank a multiple of n.. Duh.

46



• Randall has just (4/vi/2016) pointed out to me that TCnT is in some sense
the same theory as NFU + |V | = |Pn(V )|. It could be a good idea to spell this
out. Evidently any model of NFU + |V | = |Pn(V )| will give rise to a model of
TCnT. The other direction looks a lot more complicated.

• In a model of TCkT one can sensibly ask, for any m, whether or not
Ambiguity holds for formulæ that are stratifiable-mod-k ·m.

• André Pétry suggests a generalisation of a result of his-and-mine alluded
to earlier ([7], [15], and [16]) to the effect that if two structures are elementarily
equivalent for formulæ that are stratifiable-mod-n then they have stratimorphic
(as it were) ultrapowers.

• One could investigate whether the construction of [9] could be modified to
encompass expressions that are stratifiable-mod-n. That looks messy.

• There are natural settings where one encounters embeddings that are ele-
mentary for stratifiable formulæ, and where one might hope to get embeddings
that are elementary for some of these larger classes of formulæ. CO models is
one setting: the embedding from the ground model into the hereditary low sets
is elementary for stratifiable formulæ. (That particular example is probably
not a good one, because if the inclusion embedding is elementary for formulæ
that are stratifiable-mod-n for even one n then the hereditarily low sets cannot
contain any Quine atoms). For another, let M be a structure for L. Consider
the class of those m ∈M s.t. m is fixed by all permutations of M that, for all n,
are jn of something. It’s an elementary substructure as long as it’s extensional.
Now use instead those permutations π of M s.t. jmπ = 11. Now the class of
fixed things is a substructure elementary for expressions that are stratifiable
mod m (again, assuming extensionality).

• Str(ZF) is the theory axiomatised by the stratifiable axioms of ZF; by
analogy strn(ZF) will be the theory axiomatised by those axioms of ZF that
are stratifiable-mod-n. ZF can be interpreted in str(ZF) + IO. (IO is the axiom
“every set is the same size as a set of singletons”). Observe that IO is a theorem
of strn(ZF), since it proves that ιn �x exists for all x, so every set is the same
size as a set of singletons, so ZF can be interpreted in strn(ZF). At this stage
we cannot see how to prove that strn(ZF) = ZF. There are parallel questions
about the fragments of Mac.

• Stratified parameter-free ∆0 ∈-induction seems to prove no more than
the nonexistence of a universal set. How about stratifiable-mod-n parameter-
free ∈-induction. . . what does that do? One might hope that it would prove
the nonexistence of ∈-loops of circumference n but we can’t see it offhand.
But in any case we should start with the case n = 2 in order to not drown
immediately in the deep end. We noted in section 3 that the collections I and
II as in [11] are both the extensions of expressions that are stratifiable-mod-
2. So stratifiable-mod-n parameter-free ∈-induction will imply ∈-determinacy.
(tho’ that induction is not ∆0. . . ) Needs looking into.
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Stratifiable parameter-free ∈-induction implies the nonexistence of the uni-
versal set. (If none of your members are the universal set, you can’t be either).
It’s not known if the converse holds. However the strengthening of the converse
one would consider in this context, namely “the non-existence of the universal
set implies ∈-induction for parameter-free formulæ that are stratifiable-mod-n”
clearly does not go through: ∈-induction for parameter-free formulæ that are
stratifiable-mod-n” implies (∀x)(x 6∈2 x), and that clearly doesn’t follow from
the nonexistence of V .

• Suppose we add to our favourite theory of wellfounded sets a scheme of
∈-induction for formulæ that are stratifiable-mod-n, for some or all n. Is it
the case that any such model is first-order indistinguishable from a wellfounded
model? Can we prove anything with that flavour . . . ? A: by proposition 2 we
could prove that every set is wellfounded.

• Every weakly stratifiable theorem of first-order logic has a cut-free weakly
stratifiable proof; every stratifiable theorem of first-order logic has a stratifiable
proof (Crabbé, [3]); are there analogues for stratification-mod-n? Every theorem
of first-order logic that is stratifiable-mod-n has a proof that is stratifiable-mod-
n? Crabbé thinks so. Why should it not work, after all?

On the other hand we should not expect a stratifiable-mod-n analogue of
Crabbé’s result that SF is consistent.

• There is an old question about whether the atoms of a model of NFU can
be indiscernible. We know that they are indiscernible wrt stratifiable formulæ;
now that we’ve started looking into stratification-mod-n it is natural to wonder
whether one might be able to show that the atoms of a model of NFU must be
indiscernible wrt expressions that are stratifiable-mod-2. At this stage it’s not
looking hopeful.

• We should investigate the consistency results relative to TZT obtained by
omitting types, to see how many of them work for TCnT. They make heavy use
of Coret’s lemma. Coret’s lemma tells us how permutations preserve stratifiable
formulæ. Any old permutation works. In the NF context we know that if we
want to preserve all formulæ then we can’t use any-old-permutation but only
∈-automorphisms. Working in TCnT we want to preserve formulæ that are
stratifiable-mod-n, and that means using permutations π s.t. π = jn(π), and
such permutations are not just lying around. TCnT really does behave more
like NF than like TZT.

• There is the old question of whether or not Ambn is equiconsistent with
NF. Suppose we work in KF, and consider TC2T to keep things simple initially.
Suppose we have an x with |x| = |P2x|. Is that going to give us a model of NF?
Let α be the cardinal of such an x. Can we prove that α = 2Tα? We suspect
not, because that would probably say something about theorems in TC2T. A
useful thought is the fact that α is in of something for all concrete n. So we
certainly have α = α+1, α = α+α, α = α·α. The plan is to use these equations

to show that xtP(x) gives us a model of NF. So we want T (2α+2Tα) = α+2Tα.

Now T (2α+2Tα) = 2Tα · 22T
2α

. T (2α+2Tα) = 2Tα · α.
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So we want α+2Tα = 2Tα ·α, and we hope to get it from the good behaviour
of α. We have α = α2 so we get 2Tα = 2Tα

2

= (2Tα)Tα which looks hopeful but
isn’t exactly what we want. The warning sign is that if this worked it would
show that 2Tα absorbs α and that sounds extremely implausible.

But even if α + 2Tα = 2Tα · α it wouldn’t help. We can exploit Bernstein’s
Lemma to show that we would have α = 2Tα or—at the very least—that each
≤∗ the other, which is just as bad, as follows.

If we have α+2Tα = 2Tα ·α then Bernstein’s Lemma gives α ≤ 2Tα∨2Tα ≤∗
α and α ≤∗ 2Tα ∨ 2Tα ≤ α so a case analysis gives α = 2Tα ∨ α ≤∗ 2Tα ≤∗ α
which gives 2α = 22

Tα

= Tα, which is altogether too strong.
One has the impression that KF really does not want to prove that if there

is x with |x| = |Pn(x)| then there is an x with |x| = |P(x)|. The moral of this
seems to be that TC2T is not as much like NF as it might be.

• Consider “2(Duality for sentences that are stratifiable-mod-2)”
Is this consistent? Does it imply AC2?

• ZF + Foundation and ZF + antifoundation are alike extensions of ZF +
Coret’s axiom “every set is the same size as a wellfounded set” conservative
for stratifiable sentences. (See [12]). Does this hold also for sentences that are
stratifiable-mod-n?

Checking this last one should be simple!
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[3] Crabbé, M. “Stratification and Cut-elimination” Journal of Symbolic Logic
56, (1991) pp. 213–226.

[4] Olivier Esser and Thomas Forster, “Relaxing stratification” Bull. Belg.
Math. Soc. Simon Stevin 14 (2007), pp. 247–258. Also available from
www.dpmms.cam.ac.uk/~tf/relaxing.pdf

[5] Olivier Esser and Thomas Forster, “Seeking Structure for the Collection of
Rieger-Bernays Permutation models” unpublished but available from www.

dpmms.cam.ac.uk/~tfpermstalk.pdf

[6] Thomas Forster “Set Theory with a Universal Set” Oxford Logic guides 20.
Oxford University Press 1992.

[7] Thomas Forster, “Permutation Models and Stratified Formulæ, a Preser-
vation Theorem” Zeitschrift für Mathematische Logic und Grundlagen der

49

www.dpmms.cam.ac.uk/~tf/relaxing.pdf
www.dpmms.cam.ac.uk/~tfpermstalk.pdf
www.dpmms.cam.ac.uk/~tfpermstalk.pdf


Mathematik, 36 (1990) pp 385–388. Also available from www.dpmms.cam.ac.

uk/~tf/strZF.pdf

[8] Assorted stuff on CO models.

[9] Thomas Forster, “AC fails in the natural analogues of L and the cumulative
hierarchy that model the stratified fragment of ZF”. Contemporary Math-
ematics 36 2004. Also available from www.dpmms.cam.ac.uk/~tf/zmlmany.

pdf

[10] Thomas Forster “A new Datatype of scansets and some Applications:
Interpreting Mac in KF” unpublished but available at www.dpmms.cam.ac.

uk/~tf/scansets.pdf

[11] Thomas Forster “Games Played on an Illfounded Membership Relation”.
in A Tribute to Maurice Boffa ed Crabbé, Point, and Michaux. Supplement
to the December 2001 number of the Bulletin of the Belgian Mathematical
Society.

[12] Thomas Forster ZF + “Every Set is the same size as a Wellfounded Set”
Journal of Symbolic Logic 58 (2003) pp 1–4.

[13] M. Randall Holmes “The consistency of NF”

[14] M Randall Holmes The Equivalence of NF-style Set theories with “Tangled”
type theories; the construction of ω-models of predicative NF (and more).
Journal of Symbolic Logic 60, pp. 178–189.
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