Exercise A.1. An alternative proposed proof of the chain rule runs as follows. We rewrite:

$$
\frac{g(f(x))-g(f(p))}{x-p}=\frac{g(f(x))-g(f(p))}{f(x)-f(p)} \frac{f(x)-f(p)}{x-p},
$$

and we claim:

$$
\lim _{x \rightarrow p} \frac{g(f(x))-g(f(p))}{f(x)-f(p)}=\lim _{y \rightarrow f(x)} \frac{g(y)-g(f(p))}{y-f(p)}=g^{\prime}(f(p))
$$

which together with:

$$
\lim _{x \rightarrow p} \frac{f(x)-f(p)}{x-p}=f^{\prime}(p)
$$

gives the result. Why is this 'proof' not valid?
Exercise A.2. a) Suppose that $n \in \mathbb{N}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ is given by:

$$
f(x)=x^{n} .
$$

Show that f is differentiable at all points of \mathbb{R} and $f^{\prime}(x)=n x^{n-1}$.
b) Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is any polynomial function of x, then f is differentiable at all points of \mathbb{R}.

Exercise A.3. Prove ${ }^{3}$ that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable everywhere in \mathbb{R}, and find the derivative of:
a) $f(x)=\sin x$
b) $f(x)=\cos x$
c) $f(x)=\exp x$
d) $f(x)=e^{-x^{2}}$

Exercise A.4. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by:

$$
f(x):= \begin{cases}x^{2} \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}
$$

Please send any corrections to c.warnick@imperial.ac.uk Questions marked (*) are optional
${ }^{3}$ You may assume

$$
\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}, \quad \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}, \quad \exp x=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}
$$

a) Show that for $x \neq 0, f$ is differentiable at x with derivative:

$$
f^{\prime}(x)=-\cos \frac{1}{x}+2 x \sin \frac{1}{x} .
$$

[Hint: Use Theorems A.2, A.3]
b) Show that f is differentiable at $x=0$ with derivative:

$$
f^{\prime}(0)=0 .
$$

[Hint: directly write down $\frac{f(x)-f(0)}{x}$ and show that the limit as $x \rightarrow 0$ is 0.]
c) Show that the function $x \mapsto f^{\prime}(x)$ is not continuous at $x=0$.
[Hint: Consider the sequence $\left(x_{i}\right)_{x=1}^{\infty}$ with $x_{i}=(2 \pi i)^{-1}$.]
Exercise A.5. Show that if the power series:

$$
f(x)=\sum_{k=0}^{\infty} a_{k} x^{k},
$$

has radius of convergence $R>0$, then the power series:

$$
g(x)=\sum_{k=1}^{\infty} k a_{k} x^{k-1}
$$

also has radius of convergence R. Deduce that a power series is smooth inside its radius of convergence.
[Hint: Suppose $|x|=r<R$, and apply the comparison test to the second series, comparing with the series $\sum_{k=0}^{\infty} a_{k} s^{k}$ for some $r<s<R$,]

Exercise A.6. Suppose that $f, g:(a, b) \rightarrow \mathbb{R}$ are differentiable on (a, b) and satisfy:

$$
f^{\prime}(x)=g^{\prime}(x), \quad \text { for all } x \in(a, b) .
$$

Show that:

$$
f(x)=g(x)+C .
$$

[Hint: Consider $u(x)=f(x)-g(x)$.]
Exercise A.7. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and satisfies:

$$
\begin{equation*}
f^{\prime}(x)=f(x), \quad \text { for all } x \in \mathbb{R} \quad f(0)=1 . \tag{6}
\end{equation*}
$$

a) Show that the function:

$$
f(x)=\exp x
$$

is a solution of (6).
b) Let $g(x)=\frac{f(x)}{\exp (x)}$. Show that:

$$
g^{\prime}(x)=0, \quad \text { for all } x \in \mathbb{R} \quad g(0)=1
$$

Conclude that $f(x)=\exp x$ is the unique solution of (6).
c) By considering $f(x)=\frac{1}{\exp (-x)}$ or otherwise, show that $\exp (-x)=\frac{1}{\exp x}$.

Exercise A.8. Let $p_{k}: \mathbb{R} \rightarrow \mathbb{R}$ be given by:

$$
p_{k}(x)=a_{k} x^{k}+a_{k-1} x^{k-1}+\ldots+a_{0}
$$

for some $a_{i} \in \mathbb{R}$. Show that there is a unique $f: \mathbb{R} \rightarrow \mathbb{R}$ which is differentiable everywhere in \mathbb{R} and satisfies:

$$
f^{\prime}(x)=p_{k}, \quad f(0)=0
$$

and that f is a polynomial of degree $k+1$.
[Hint: First find one solution, then show that it must be unique.]

Exercise A.9. Suppose that $f, g:(a, b) \rightarrow \mathbb{R}$ are k-times differentiable on (a, b) and satisfy:

$$
f^{(k)}(x)=g^{(k)}(x), \quad \text { for all } x \in(a, b)
$$

Show that:

$$
f(x)=g(x)+p_{k-1}(x)
$$

for some polynomial p_{k-1} of order $k-1$.
[Hint: Work by induction on k]
Exercise A.10. a) By using the power series or otherwise, show that for any $N \in \mathbb{N}^{*}$ and $x \geq 0$ that:

$$
1+\frac{x^{N}}{N!} \leq \exp x
$$

b) Deduce that for $y>0$:

$$
e^{-\frac{1}{y}} \leq \frac{1}{1+\frac{1}{N!y^{N}}} \leq N!y^{N}
$$

c) Suppose p_{k} is a polynomial of degree k, and consider the function:

$$
f(x)= \begin{cases}0 & x \leq 0 \\ p_{k}\left(\frac{1}{x}\right) e^{-\frac{1}{x}} & x>0\end{cases}
$$

Show that:

$$
\lim _{y \rightarrow 0} f(y)=0
$$

4

Exercise A. $11\left(^{*}\right)$. Consider the function:

$$
f(x)= \begin{cases}0 & |x| \geq 1 \\ e^{-\frac{1}{1-x^{2}}} & |x|<1\end{cases}
$$

Show that f is smooth and non-negative on \mathbb{R}.
[Hint: Let

$$
g(x)= \begin{cases}0 & x \leq 0 \\ e^{-\frac{1}{x}} & x>0\end{cases}
$$

and show that $f(x)=g[2(1+x)] g[2(1-x)]$./

