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Abstract—Rényi’s thinning operation on a discrete random vari-
able is a natural discrete analog of the scaling operation for contin-
uous random variables. The properties of thinning are investigated
in an information-theoretic context, especially in connection with
information-theoretic inequalities related to Poisson approxima-
tion results. The classical Binomial-to-Poisson convergence (some-
times referred to as the “law of small numbers”) is seen to be a
special case of a thinning limit theorem for convolutions of discrete
distributions. A rate of convergence is provided for this limit, and
nonasymptotic bounds are also established. This development par-
allels, in part, the development of Gaussian inequalities leading
to the information-theoretic version of the central limit theorem.
In particular, a “thinning Markov chain” is introduced, and it is
shown to play a role analogous to that of the Ornstein-Uhlenbeck
process in connection to the entropy power inequality.

Index Terms—Binomial distribution, compound Poisson distri-
bution, entropy, information divergence, law of small numbers, law
of thin numbers, Poisson distribution, Poisson-Charlier polyno-
mials, thinning.

I. INTRODUCTION

A PPROXIMATING the distribution of a sum of weakly
dependent discrete random variables by a Poisson distri-

bution is an important and well-studied problem in probability;
see [2] and the references therein for an extensive account.
Strong connections between these results and information-the-
oretic techniques were established [18], [28]. In particular, for
the special case of approximating a binomial distribution by
a Poisson, some of the sharpest results to date are established
using a combination of the techniques [18], [28], and Pinsker’s
inequality [10], [13], [22]. Earlier work on information-theoretic
bounds for Poisson approximation is reported in [42], [25], [34].

The thinning operation, which we define next, was introduced
by Rényi in [35], who used it to provide an alternative charac-
terization of Poisson measures.

Definition 1.1: Given and a discrete random vari-
able with distribution on , the -thinning
of is the distribution of the sum

where i.i.d. Bern (1)
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where the random variables are independent and identi-
cally distributed (i.i.d.) each with a Bernoulli distribution with
parameter , denoted , and also independent of . [As
usual, we take the empty sum to be equal to zero.] An
explicit representation of can be given as

(2)

When it causes no ambiguity, the thinned distribution is
written simply .

For any random variable with distribution on , we
write for the -fold convolution of with itself, i.e., the
distribution of the sum of i.i.d. copies of . For example, if

, then , the binomial distribution
with parameters and . It is easy to see that its -thinning,

, is simply ; see Example 2.2. Therefore,
the classical Binomial-to-Poisson convergence result—some-
times referred to as the “law of small numbers”—can be phrased
as saying that, if , then

(3)

where denotes the Poisson distribution with parameter
.

One of the main points of this paper is to show that this result
holds for very wide class of distributions , and to provide con-
ditions under which several stronger and more general versions
of (3) can be obtained. We refer to results of the form (3) as laws
of thin numbers.

Section II contains numerous examples that illustrate how
particular families of random variables behave on thinning,
and it also introduces some of the particular classes of random
variables that will be considered in the rest of the paper. In
Sections III and IV several versions of the law of thin numbers
are formulated; first for i.i.d. random variables in Section III,
and then for general classes of (not necessarily independent
or identically distributed) random variables in Section IV. For
example, in the simplest case where are i.i.d. with
distribution on and with mean , so that the distribution
of their sum, , is , Theorem 3.3
shows that

(4)

as long as , where, as usual, de-
notes the information divergence, or relative entropy, from to

,1

1Throughout the paper, ��� denotes the natural logarithm to base �, and we
adopt the usual convention that � ��� � � �.
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Note that, unlike most classical Poisson convergence results, the
law of thin numbers in (4) proves a Poisson limit theorem for the
sum of a single sequence of random variables, rather than for a
triangular array.

It may be illuminating to compare the result (4) with the in-
formation-theoretic version of the central limit theorem (CLT);
see, e.g., [3] and [23]. Suppose are i.i.d. continuous
random variables with density on , and with zero mean and
unit variance. Then the density of their sum

, is the -fold convolution of with itself. Write
for the standard scaling operation in the CLT regime: If a

continuous random variable has density , then is the
density of the scaled random variable , and, in particular,
the density of the standardized sum is . The in-
formation-theoretic CLT states that, if , we have

(5)

where is the standard Normal density. Note the close analogy
between the statements of the law of thin numbers in (4) and the
CLT in (5).

Before describing the rest of our results, we mention that
there is a significant thread in the literature on thinning limit
theorems and associated results for point processes. Conver-
gence theorems of the “law of thin numbers” type, as in (3)
and (4), were first examined in the context of queueing theory
by Palm [33] and Khinchin [26], while more general results
were established by Grigelionis [17]. See the discussion in the
text, [12, pp. 146–166], for details and historical remarks; also
see the comments following Section IV, Theorem 4.1. More
specifically, this line of work considered asymptotic results, pri-
marily in the sense of weak convergence, for the distribution
of a superposition of the sample paths of independent (or ap-
propriately weakly dependent) point processes. Here we take
a different direction and, instead of considering the full infi-
nite-dimensional distribution of a point process, we focus on
finer results—e.g., convergence in information divergence and
nonasymptotic bounds—for the one-dimensional distribution of
the thinned sum of integer-valued random variables.

With these goals in mind, before examining the finite- be-
havior of , in Section V we study a simpler but re-
lated problem, on the convergence of a continuous-time “thin-
ning” Markov chain on , which acts as the queue.
It is well known that this Markov chain has the Poisson law as its
unique invariant measure (see for example, [31] or [32]). In The-
orem 5.1 we characterize precisely the rate at which it converges
to the Poisson law in terms of the distance, which leads to
an upper bound on its convergence in information divergence. A
new characterization of the Poisson distribution in terms of thin-
ning is also obtained. The main technical tool used here is based
on an examination of the properties of the Poisson-Char-
lier polynomials in the thinning context. In the present context,
as described by Chafaï [7], this Markov chain plays a role par-
allel to that of the Ornstein-Uhlenbeck process in the context of
Gaussian convergence and the entropy power inequality [37],
[38], [29].

In Section VI we give both asymptotic and finite- bounds
on the rate of convergence for the law of thin numbers. Specif-

ically, we employ the scaled Fisher information functional in-
troduced in [28] to give precise, explicit bounds on the diver-
gence . An example of the type of result
we prove is the following: Suppose is an ultra bounded (see
Section II, Definition 2.1) random variable, with distribution ,
mean , and finite variance . Then

for a nonzero constant we explicitly identify; cf. Corollary 6.1.
Similarly, in Section VIII we give both finite- and asymp-

totic bounds on the law of small numbers in terms of the total
variation distance, , between
and the distribution. In particular, Theorem 8.1 states that
if has mean and finite variance , then, for all

[Corresponding lower bounds will be presented in the com-
panion paper [21].]

A closer examination of the monotonicity properties of the
scaled Fisher information in relation to the thinning operation is
described in Section VII. Finally, Section IX shows how the idea
of thinning can be extended to compound Poisson distributions.
TheAppendix contains the proofs of some of the more technical
results.

Finally we mention that, after the announcement of (weaker
and somewhat more specialized versions of) the present results
in [20], Yu [41] also obtained some interesting, related results. In
particular, he showed that the conditions of the strong and ther-
modynamic versions of the law of thin numbers (see Theorems
3.3 and 3.2) can be weakened, and he also provided conditions
under which the convergence in these limit theorems is mono-
tonic in .

II. EXAMPLES OF THINNING AND DISTRIBUTION CLASSES

This section contains several examples of the thinning opera-
tion, statements of its more basic properties, and the definitions
of some important classes of distributions that will play a cen-
tral role in the rest of this paper. The proofs of all the lemmas
and propositions of this section are given in the Appendix.

Note, first, two important properties of thinning that are im-
mediate from its definition:

1. The thinning of a sum of independent random variables is
the convolution of the corresponding thinnings.

2. For all and any distribution on , we have
the following.

(6)

Example 2.1: Thinning preserves the Poisson family of laws,
in that . This follows from (2), since
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where , , denotes the Poisson mass
function.

As it turns out, the factorial moments of a thinned distribu-
tion are easier to work with than ordinary moments. Recall that
the th factorial moment of is , where denotes the
falling factorial

The factorial moments of an -thinning are easy as given by
the following result.

Lemma 2.1: For any random variable with distribution
on and for , writing for a random variable with
distribution :

(7)

That is, thinning scales factorial moments in the same way as
ordinary multiplication scales ordinary moments.

We will use the following result, which is a multinomial ver-
sion of Vandermonde’s identity and is easily proved by induc-
tion. The details are omitted.

Lemma 2.2: The falling factorial satisfies the multinomial
expansion; that is, for any positive integer , all integers

, and any , the factorial

equals

The following is a basic regularity property of the thinning
operation.

Proposition 2.1: For any , the map is
injective.

Example 2.2: Thinning preserves the class of Bernoulli sums.
That is, the thinned version of the distribution of a finite sum of
independent Bernoulli random variables (with possibly different
parameters) is also such a sum. This follows from property 1
stated in the beginning of this section, combined with the ob-
servation that the -thinning of the distribution is the

distribution. In particular, thinning preserves the bi-
nomial family: .

Example 2.3: Thinning by transforms a geometric distri-
bution with mean into a geometric distribution with mean .
Recalling that the geometric distribution with mean has point
probabilities

using (2)

The sum of i.i.d. geometrics has a negative binomial distribu-
tion. Thus, in view of this example and property 1 stated in the
beginning of this section, the thinning of a negative binomial
distribution is also negative binomial.

Partly motivated by these examples, we describe certain
classes of random variables (some of which are new). These
appear as natural technical assumptions in the subsequent
development of our results. The reader may prefer to skip the
remainder of this section and only refer back to the definitions
when necessary.

Definition 2.1:
1) A Bernoulli sum is a distribution that can be obtained from

the sum of finitely many independent Bernoulli random
variables with possibly different parameters. The class of
Bernoulli sums with mean is denoted by and the
the union is denoted by .

2) A distribution satisfying

(8)

is said to be ultra log-concave (ULC); cf. [24]. The set of
ultra log-concave distributions with mean shall be de-
noted , and we also write for the union

. Note that (8) is satisfied for a single value
of if and only if it is satisfied for all .

3) The distribution of a random variable that satisfies
for all will be said to be

ultra bounded (UB) with ratio . The set of ultra bounded
distributions with this ratio is denoted .

4) The distribution of a random variable satisfying
for all will be said to be Poisson

bounded (PB) with ratio . The set of Poisson bounded
distributions with this ratio is denoted .

5) A random variable will be said to be ULC, UB, or PB, if
its distribution is ULC, UB or PB, respectively.

First we mention some simple relationships between these
classes. Walkup [39] showed that if and

then .
Hence, . In [24] it was shown that, if

, then . Clearly, .
Further, is Poisson bounded if and only if the -thinning
is Poisson bounded, for some . The same holds for ultra
boundedness.

Proposition 2.2: In the notation of Definition 2.1, the class
. That is, if the distribution of is in

then .
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The next result states that the PB and UB properties are pre-
served on summing and thinning.

Proposition 2.3:
a) If and are in-

dependent, then and
.

b) If and are in-
dependent, then and

.
Formally, the above discussion can be summarized as

Finally, we note that each of these classes of distributions is
“thinning-convex,” i.e., if and are element of a set then

is also an element of the same set. In partic-
ular, thinning maps each of these sets into itself, since

where , the point mass at zero, has
.

III. LAWS OF THIN NUMBERS: THE I.I.D. CASE

In this section we state and prove three versions of the law of
thin numbers, under appropriate conditions; recall the relevant
discussion in the Introduction. Theorem 3.1 proves convergence
in total variation, Theorem 3.2 in entropy, and Theorem 3.3 in
information divergence.

Recall that the total variation distance between two
probability distributions , on is

Theorem 3.1 (Weak Version): For any distribution on
with mean

Proof: In view of Scheffé’s lemma, pointwise convergence
of discrete distributions is equivalent to convergence in total
variation, so it suffices to show that, converges
to , for all .

Note that , and that (2) implies
the following elementary bounds for all , using Jensen’s in-
equality:

(9)

Since for i.i.d. variables , the probability
, taking we

obtain that the convolution

is bounded below by

Now, for any fixed value of and tending to infinity

and

and by monotone convergence

Therefore

Since all are probability mass functions and so is
, the above is necessarily a limit.

As usual, the entropy of a probability distribution on is
defined by

Recall that the entropy of the Poisson distribution cannot be
expressed in closed form, although useful bounds do exist; see,
e.g., [1] and the references therein.

Theorem 3.2 (Thermodynamic Version): If is any distribu-
tion on which is Poisson bounded with mean , then

Proof: The distribution converges pointwise
to the Poisson distribution so, by dominated convergence, it is
sufficient to prove that is
dominated by a summable function. This easily follows from
the simple bound in the following lemma.

Lemma 3.1: Suppose is Poisson bounded with ratio .
Then, , for all .

Proof: Note that, for all

so that, in particular, , and,
.

From the proof of [24, Theorem 2.5] we know that,
if is ultra log-concave, so for

such distributions the theorem states that the entropy converges
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to its maximum. For ultra log-concave distributions the ther-
modynamic version also implies convergence in information
divergence. This also holds for Poisson bounded distributions,
which is easily proved using dominated convergence. As shown
in the next theorem, convergence in information divergence can
be established under quite general conditions.

Theorem 3.3 (Strong Version): For any distribution on
with mean and

The proof of Theorem 3.3 is given in the Appendix; it is based
on a straightforward but somewhat technical application of the
following general bound.

Proposition 3.1: Let be a random variable with distribu-
tion on and with finite mean , for some . If

, then

(10)

where the right-hand side is always finite.

Proof: First note that, since has finite mean, its entropy
is bounded by the entropy of a geometric with the same mean,
which is finite, so is finite. Therefore, the divergence

can be expanded as

(11)

where the last inequality follows from the Stirling bound

and denotes the function . Since the di-
vergence is finite, the bound (11) implies that

is finite. [Recall the convention that .]
Also note that the representation of in (2) can be

written as,

Using this and the joint convexity of information divergence in
its two arguments (see, e.g., [9, Th. 2.7.2]), the divergence of
interest can be bounded as

(12)

where the first term (corresponding to ) equals . Since
the Poisson measures form an exponential family, they satisfy a
Pythagorean identity [11] which, together with the bound

(13)

see, e.g., [22] or [28], gives, for each

Since the final bound clearly remains valid for , substi-
tuting it into (12) gives (10).

IV. LAWS OF THIN NUMBERS: THE NON-I.I.D. CASE

In this section we state and prove more general versions of the
law of thin numbers, for sequences of random variables that are
not necessarily independent or identically distributed. Although
some of the results in this section are strict generalizations of
Theorems 3.1 and 3.3, their proofs are different.

We begin by showing that, using a general proof technique
introduced in [28], the weak law of thin numbers can be estab-
lished under weaker conditions than those in Theorem 3.1. The
main idea is to use the data-processing inequality on the total
variation distance between an appropriate pair of distributions.

Theorem 4.1 (Weak Version, Non-I.I.D.): Let be
an arbitrary sequence of distributions on , and write

for the convolution of the first of them. Then,

as long as the following three conditions are satisfied as :
a) ;
b) ;
c) .
Note that Theorem 4.1 can be viewed as a one-dimensional

version of Grigelionis’ Theorem 1 in [17]; recall the relevant
comments in the Introduction. Recently, Schuhmacher [36]
established nonasymptotic, quantitative versions of this result,
in terms of the Barbour-Brown distance, which metrizes weak
convergence in the space of probability measures of point
processes. As the information divergence is a finer functional
than the Barbour-Brown distance, Schuhmacher’s results are
not directly comparable with the finite- bounds we obtain in
Propositions 3.1, 4.1, and Corollary 6.1.

Before giving the proof of the theorem, we state a simple
lemma on a well-known bound for . Its short
proof is included for completeness.

Lemma 4.1: For any , ,
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Proof: Suppose, without loss of generality, that ,
and define two independent random variables and

, so that, . Then, by the
coupling inequality [30]

The second inequality in the lemma is trivial.

Proof of Theorem 4.1: First we introduce some convenient
notation. Let be independent random variables with

for all ; for each , let be indepen-
dent random variables with for all ; and simi-

larly let be independent random vari-
ables, where , for , . Also we define the

sums, and , and note that,
, and , where , for

all .
Note that as , since

and, by assumption, and , as .
With these definitions in place, we approximate

(14)

where, by Lemma 4.1, the second term is bounded by
which vanishes as . Therefore, it suffices to show that
the first term in (14) goes to zero. For that term

where the first inequality above follows from the fact that, being
an -divergence, the total variation distance satisfies the data-
processing inequality [11]; the second inequality comes from
the well-known bound on the total variation distance between
two product measures as the sum of the distances between their
respective marginals; and the third bound is simply the triangle
inequality.

Finally, noting that, for any random variable ,
, and also recalling the simple

estimate

yields

and, by assumption, this converges to zero as , com-
pleting the proof.

Recall that, in the i.i.d. case, the weak law of thin numbers
only required the first moment of to be finite, while the strong
version also required that the divergence from to the Poisson
distribution be finite. For a sum of independent, non-identically
distributed random variables with finite second moments,
Proposition 3.1 can be used as in the proof of Theorem 3.3
to prove the following result. Note that the precise conditions
required are somewhat analogous to those in Theorem 4.1.

Theorem 4.2 (Strong Version, Non-i.i.d.): Let be
an arbitrary sequence of distributions on , where each has
finite mean and finite variance. Writing for the convo-
lution , we have

as long as the following two conditions are satisfied:
a) , as ;
b) .
The proof of Theorem 4.2 is given in the Appendix, and it is

based on Proposition 3.1. It turns out that under the additional
condition of finite second moments, the proof of Proposition
3.1 can be refined to produce a stronger upper bound on the
divergence.

Proposition 4.1: If is a distribution on with mean
and variance , for some , then

(15)

Proof: Recall that in the proof of Proposition 3.1 it was
shown that

(16)

where

(17)
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and where in the last step above we used the simple bound
, for .

Substituting (17) into (16) yields

as claimed.

Using the bound (15) instead of Proposition 3.1, the following
more general version of the law of thin numbers can be estab-
lished.

Theorem 4.3 (Strong Version, Non-I.I.D.): Let be
a sequence of (not necessarily independent or identically
distributed) random variables on , and write for the
distribution of the partial sum ,

. Assume that the have finite means and variances,
and that:

a) They are “uniformly ultra bounded,” in that,
for all , with a common ;

b) Their means satisfy as ;
c) Their covariances satisfy

If in fact for all , then,

More generally

Proof: Obviously it suffices to prove the general statement.
Proposition 4.1 applied to gives

The first and third terms tend to zero by assumptions (b) and
(c), respectively. And using assumption (a), the second term is
bounded above by

which also tends to zero by assumption (b).

V. THE THINNING MARKOV CHAIN

Before examining the rate of convergence in the law of thin
numbers, we consider a related and somewhat simpler problem
for a Markov chain. Several of the results in this section may
be of independent interest. The Markov chain we will discuss
represents the evolution of the queue. Its properties
were used by Chafaï [7] to develop a family of inequalities
which extends the logarithmic Sobolev inequalities of Bobkov
and Ledoux [5], and other authors. Chafaï argues in [7, Sec. 1.2,
1.3] that this process is a natural discrete analog of the Ornstein-
Uhlenbeck process associated with the Gaussian distribution.

Definition 5.1: Let be a distribution on . For any
and , we write for the distribution

For simplicity, is often written simply as .
We note that , and that, obviously, maps

probability distributions to probability distributions. Therefore,
if for a fixed we define for all , the collec-
tion of linear operators on the space of probability
measures on defines a Markov transition semigroup. Specif-
ically, for , the transition probabilities

define a continuous-time Markov chain on . It
is intuitively clear that, as (or, equivalently, ),
the distribution should converge to the distribution.
Indeed, the following two well-known results (see for example,
[31] or [32]) state that is ergodic, with unique invariant
measure . Theorem 5.1 gives the rate at which it converges
to in terms of the moments of the underlying distribution.
This complements results such as [7, Th. 3.1], which gives a
bound in terms of the tightest value of the log-Sobolev constant.

Proposition 5.1: For any distribution on , con-
verges in total variation to , as .

Proof: From the definition of

(18)
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(19)

(20)

where (18) follows from the fact that convolution with any dis-
tribution is a contraction with respect to the norm, (19) fol-
lows from the triangle inequality, and (20) converges to zero
because of the bound (9).

Using this, we can give a characterization of the Poisson
distribution.

Corollary 5.1: Let denote a discrete distribution with mean
. If for some , then . That

is, is the unique invariant measure of the Markov chain
, and, moreover,

if and only if for some .

Proof: Assume that . Then for any ,
, so for any , by Proposition 5.1,

for sufficiently
large. The strengthened convergence of to
zero if can be proved using standard
arguments along the lines of the corresponding discrete-time
results in [15], [4], and [19].

Next we shall study the rate of convergence of to the
Poisson distribution. It is easy to check that the Markov chain

is in fact reversible with respect to its invariant measure
. Therefore, the natural setting for the study of its con-

vergence is the space of functions such that,
for . This space is also endowed

with the usual inner product

and the linear operators act on functions by mapping
each into

In other words

The reversibility of with respect to implies that
is a self-adjoint linear operator on , therefore, its eigenvec-
tors are orthogonal functions. In this context, we introduce the
Poisson-Charlier family of orthogonal polynomials ; see [8]
for a broad introduction.

Definition 5.2: For given , the Poisson-Charlier polynomial
of order is given by

Some well-known properties of the Poisson-Charlier polyno-
mials are listed in the following lemma without proof. Note that
their exact form depends on the chosen normalization; other au-
thors present similar results, but with different normalizations.

Lemma 5.1: For any , , and :
1)

(21)

2)

(22)

3)

(23)

4)

(24)

where .
Observe that, since the Poisson-Charlier polynomials form an

orthonormal set, any function can be expanded as

(25)

It will be convenient to be able to translate between factorial mo-
ments and the “Poisson-Charlier moments,” . For
example, if , then taking in (21) shows that

for all . More generally, the following
proposition shows that the role of the Poisson-Charlier moments
with respect to the Markov chain is analogous to the role
played by the factorial moments with respect to the pure thin-
ning operation; cf. Lemma 2.1. Its proof, given in the Appendix,
is similar to that of Lemma 2.1.

Proposition 5.2: Let be a random variable with
mean and write for a random variable with distribution

. Then

If we replace by and assume that the thinning
Markov chain has initial distribution with mean

, then, Proposition 5.2 states that
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that is, the Poisson-Charlier moments of tend to zero
like . Similarly, expanding any func-
tion in terms of Poisson-Charlier polynomials,

, and using Proposition 5.2

Thus, the rate of convergence of will be dominated by the
term corresponding to , where is the first
such that .

The following proposition (proved in the Appendix) will be
used in the proof of Theorem 5.1, which shows that this is indeed
the right rate in terms of the distance. Note that there is no
restriction on the mean of in the proposition.

Proposition 5.3: If is Poisson bounded, then the
likelihood ratio can be expanded as

Assuming , combining Propositions 5.2
and 5.3, we obtain that

(26)

where, as before, denotes the first integer such that
. This sum can be viewed as a discrete analog

of the well-known Edgeworth expansion for the distribution of
a continuous random variable. A technical disadvantage of both
this and the standard Edgeworth expansion is that, although the
sum converges in , truncating it to a finite number of terms in
general produces an expression which may take negative values.
By a more detailed analysis we shall see in the following two
sections how to get around this problem.

For now, we determine the rate of convergence of to
in terms of the distance between and ;

recall the definition of the distance between two probability
distributions and on

Theorem 5.1: If is Poisson bounded, then the distance
is finite for all and

where denotes the smallest such that .

Proof: The proof is based on a Hilbert space argument
using the fact that the Poisson-Charlier polynomials are orthog-
onal. Suppose . Using Proposition 5.3

where the last step follows from the orthogonality relation (22).
For we have

which is finite. From the previous expansion we see that
is increasing in , which implies the finite-

ness claim. Moreover, that expansion has as
its dominant term, implying the stated limit.

Theorem 5.1 readily leads to upper bounds on the rate of con-
vergence in terms of information divergence via the standard
bound

which follows from direct applications of Jensen’s inequality.
Furthermore, replacing this bound by the well-known approxi-
mation [11]

gives the estimate

We shall later prove that, in certain cases, this approximation
can indeed be rigorously justified.

VI. THE RATE OF CONVERGENCE IN THE STRONG LAW OF

THIN NUMBERS

Let be a random variable on with mean . In
Theorem 3.3 we showed that, if is finite, then

(27)

If also has finite variance , then Proposition 4.1 implies
that, for all

(28)
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suggesting a convergence rate of order . In this section, we
prove more precise upper bounds on the rate of convergence in
the strong law of thin numbers (27). For example, if is an
ultra bounded random variable with , then we show that
in fact

where . This fol-
lows from the more general result of Corollary 6.1; its proof is
based on a detailed analysis of the scaled Fisher information in-
troduced in [28]. We begin by briefly reviewing some properties
of the scaled Fisher information.

Definition 6.1: The scaled Fisher information of a random
variable with mean , is defined by

where denotes the scaled score function

In [28, Prop. 2] it was shown, using a logarithmic Sobolev
inequality of Bobkov and Ledoux [5], that for any

(29)

under mild conditions on the support of . Also, [28, Prop. 3]
states that satisfies a subadditivity property: For indepen-
dent random variables

(30)

where . In particular, recalling that the thinning
of a convolution is the convolution of the corresponding thin-
nings, if are i.i.d. random variables with mean

then the bounds in (29) and (30) imply

(31)

Therefore, our next goal is to determine the rate at which
tends to 0 for tending to 0. We begin with the

following proposition; its proof is given in Appendix.

Proposition 6.1: If is Poisson bounded, then ad-
mits the representation

Moreover, the truncated sum from to is an upper bound
for if is even, and a lower bound if is odd.

An important consequence of this proposition is that the prob-
ability tends to zero like , as . Moreover, it
leads to the following asymptotic result for the scaled Fisher in-
formation, also proved in theAppendix.

Theorem 6.1: Suppose has mean and it is ultra
bounded with ratio . Let denote the smallest integer
such that . Then

where .
Combining Theorem 6.1 with (31) immediately yields the

following.

Corollary 6.1: Suppose has mean and it is ultra
bounded with ratio . Let denote the smallest integer
such that . Then

where .

VII. MONOTONICITY RESULTS FOR THE SCALED

FISHER INFORMATION

In this section we establish a finer result for the behavior of
the scaled Fisher information upon thinning, and use that to de-
duce a stronger finite- upper bound for the strong law of thin
numbers. Specifically, if is ULC with mean , and
denotes a random variable with distribution , we will show
that . This implies that, for all ULC random
variables , we have the following finite- version of the strong
law of thin numbers

Note that, unlike the more general result in (28) which gives a
bound of order , the above bound is of order , as long
as is ULC.

The key observation for these results is in the following
lemma.

Lemma 7.1: Suppose is a ULC random variable with dis-
tribution and mean . For any , write for a
random variable with distribution . Then the derivative of

with respect to satisfies

where, for a random variable with mass function and mean
, we define

Proof: This result follows on using the expression for the
derivative of arising as the case in [24,
Prop. 3.6], that is
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Using this, for each we deduce that the derivative

can be expressed as the sum of

plus

The result follows (with the term-by-term differentiation of the
infinite sum justified) if the sum of these terms in is absolutely
convergent. The first terms are positive, and their sum is abso-
lutely convergent to by assumption. The second terms form a
collapsing sum, which is absolutely convergent assuming that

Note that, for any ULC distribution , by definition we have for
all , , so that the
above sum is bounded above by,

which is finite by Proposition 2.2.

We now deduce the following theorem, which parallels, re-
spectively, [41, Th. 8], where a corresponding result is proved
for the information divergence.

Theorem 7.1: Let be a ULC random variable with
mean . Write for a random variable with distribution .

(i)

(32)

(ii)

(33)

Proof: The first part follows from the observation
that is increasing in , since, by Lemma
7.1, its derivative is . Taking

in the more technical Lemma
7.2 below, we deduce that for any random
variable , and this proves (i). Then (ii) immediately follows
from (i) combined with the earlier bound (31), upon recalling
that thinning preserves the ULC property [24].

Consider the finite difference operator defined by

for functions . We require a result suggested by
relevant results in [6], [27]. Its proof is given in the Appendix.

Lemma 7.2: Let be ULC random variable with distribution
on . Then for any function , defining ,

VIII. BOUNDS IN TOTAL VARIATION

In this section, we show that a modified version of the argu-
ment used in the proof of Proposition 4.1 gives an upper bound
to the rate of convergence in the weak law of small numbers. If

has mean and variance , then combining the bound
(15) of Proposition 4.1 with Pinsker’s inequality we obtain

(34)

which gives an upper bound of order . From the asymp-
totic upper bound on information divergence, Corollary 6.1, we
know that one should be able to obtain upper bounds of order

. Here we derive an upper bound on total variation using the
same technique used in the proof of Proposition 4.1.

Theorem 8.1: Let be a distribution on with finite mean
and variance . Then

for all .
The proof uses the following simple bound, which follows

easily from a result of Yannaros, [40, Theorem 2.3]; the details
are omitted.

Lemma 8.1: For any , and , we
have,

Proof: The first inequality in the proof of Proposition 4.1
remains valid due to the convexity of the total variation norm
(since it is an -divergence). The next equality becomes an in-
equality triangle, and it is justified by the triangle, and we have
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And using Lemma 8.1 leads to

and the result follows by an application of Hölder’s inequality.

IX. COMPOUND THINNING

There is a natural generalization of the thinning operation,
via a process which closely parallels the generalization of the
Poisson distribution to the compound Poisson. Starting with a
random variable with values in , the -thinned ver-
sion of is obtained by writing ( times),
and then keeping each of these 1s with probability , indepen-
dently of all the others; cf. (1) above.

More generally, we choose and fix a “compounding” distribu-
tion on . Given on and ,
then the compound -thinned version of with respect to , or,
for short, the -thinned version of , is the random variable
which results from first thinning as above and then replacing
of the 1s that are kept by an independent random sample from

(35)

where all the random variables involved are independent. For
fixed and , we write for the distribution of the

-thinned version of . Then can be ex-
pressed as a mixture of “compound binomials” in the same way
as is a mixture of binomials. The compound binomial
distribution with parameters , , , denoted ,
is the distribution of the sum of i.i.d. random variables, each
of which is the product of a random variable and an
independent random variable. In other words, it is the

-thinned version of the point mass at , i.e., the distribu-
tion of (35) with w.p.1. Then we can express the prob-
abilities of the -thinned version of as,

.
The following two observations are immediate from the

definitions.
1) Compound thinning maps a Bernoulli sum into a com-

pound Bernoulli sum: If is the distribution of the
Bernoulli sum where the are independent

, then is the distribution of the “com-
pound Bernoulli sum,” where the are
independent , and the are i.i.d. with distribu-
tion , independent of the .

2) Compound thinning maps the Poisson to the compound
Poisson distribution, that is, ,
the compound Poisson distribution with rate and com-
pounding distribution . Recall that is defined
as the distribution of

where the are as before, and is a random vari-
able that is independent of the .

Perhaps the most natural way in which the compound Poisson
distribution arises is as the limit of compound binomials. That is,

, as , or, equivalently

where denotes the distribution.
As with the strong law of thin numbers, this result remains

true for general distributions , and the convergence can be es-
tablished in the sense of information divergence.

Theorem 9.1: Let be a distribution on with mean
and finite variance . Then, for any probability measure on

as long as .
The proof is very similar to that of Theorem 3.3 and thus

omitted. In fact, the same argument as that proof works for non-
integer-valued compounding. That is, if is an arbitrary prob-
ability measure on , then compound thinning a -valued
random variable as in (35) gives a probability measure

on .
It is somewhat remarkable that the statement and proof of

most of our results concerning the information divergence re-
main essentially unchanged in this case. For example, we easily
obtain the following analog of Proposition 4.1.

Proposition 9.1: If is a distribution on with mean
and variance , for some , then, for any prob-
ability measure on

The details of the argument of the proof of the proposition are
straightforward extensions of the corresponding proof of Propo-
sition 4.1.

APPENDIX

Proof of Lemma 2.1: Simply apply Lemma 2.2 to Defini-
tion 1.1 with , to obtain
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using the fact that the sequence of factorial moments of the
distribution are .

Proof of Proposition 2.1: Assume that for
a given . Then, recalling the property stated in (6), it
follows that, for all . In particular,

for all , i.e.

for all , which is only possible if for
all .

Proof of Proposition 2.2: Note that the expectation

by the Chebyshev rearrangement lemma, since it is the covari-
ance between an increasing and a decreasing function. Rear-
ranging this inequality gives

as required.

Proof of Proposition 2.3: For part (a), using Lemma 2.2,
we have

It is straightforward to check, using Lemma 2.1, that
.

To prove part (b), using Lemma 2.2, Pascal’s identity and
relabelling, yields

The second property is easily checked using Lemma 2.1.

Proof of Theorem 3.3: In order to apply Proposition 3.1
with in place of and , we need to check that

is finite. Let denote the sum of i.i.d.
random variables , so that is the distribution of

. Similarly, is the sum of independent vari-
ables. Therefore, using the data-processing inequality [11] as in
[28] implies that , which is
finite by assumption.

Proposition 3.1 gives

The law of large numbers implies that, a.s., so
a.s., as . Therefore, to

complete the proof it suffices to show that
converges to also in , or, equivalently, that the se-
quence is uniformly integrable. We
will actually show that the nonnegative random variables are
bounded above by a different uniformly integrable sequence. In-
deed, by the log-sum inequality

(36)

Arguing as in the beginning of the proof of Proposition 3.1
shows that the mean is finite, so the law
of large numbers implies that the averages in (36) converge to

a.s. and in . Hence, they form a uniformly integrable se-
quence; this implies that the are also uniformly integrable,
completing the proof.

Proof of Theorem 4.2: The proof is similar to that of The-
orem 3.3, so some details are omitted. For each , let

and write , where the random
variables are independent, with each .

First, to see that is finite, ap-
plying the data-processing inequality [11] as in [28] gives

, and it is easy to
check that each of these terms is finite because all have finite
second moments. As before, Proposition 3.1 gives

(37)
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Letting for each , the independent random vari-
ables have zero mean and

which is finite by assumption (b). Then, by the general version
of the law of large numbers on [14, p. 239] ,
a.s., and hence, by assumption (a), a.s., so that also,

a.s., as . Moreover, since
for every integer , we have

which is uniformly bounded over by our assumptions.
Therefore, the sequence is bounded in

with , which implies that it is uniformly
integrable, therefore it converges to also in , so that,

as .
Finally, recalling once more that the Poisson measures form

an exponential family, they satisfy a Pythagorean identity [11],
so that

where the first term was just shown to go to zero as ,
and the second term is actually equal to

which also vanishes as by assumption (a).

Proof of Proposition 5.2: Let and denote indepen-
dent random variables with distributions and ,
respectively. Then from the definitions, and using Lemmas 2.2
and 2.1

where we have used the fact that the factorial moments of a
random variable satisfy, . Simplifying and

interchanging the two sums,

as claimed.

Proof of Proposition 5.3: First we have to prove that
. Assume is Poisson bounded with ratio ,

say. Using the bound in Lemma 3.1

which is finite.
Now, recalling the general expansion (25), it suffices to show

that . Indeed, for

as required.

Proof of Proposition 6.1: We need the following simple
lemma; for a proof see, e.g., [16].

Lemma A.1: If

then
for even,
for odd.

Turning to the proof of Proposition 6.1, assume is
Poisson bounded with ratio . Then the series in the statement
converges, since
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For even we have

therefore

Multiplying by and summing over

A similar argument holds for odd.

Proof of Theorem 6.1: Let have distribution .
Using Lemma 2.1, Proposition 6.1, and the fact that is ultra
bounded, for small enough the score function of can be
bounded as

Since the lower bound is obvious, it follows that,

(38)

We express in three terms

(39)

For the third term note that, applying Markov’s inequality to the
function , which increases on
the integers, we obtain,

Therefore, using this and (38), for small enough the third
term in (39) is bounded above by

which, divided by , tends to zero as .
For the other two terms we use the full expansion of Propo-

sition 6.1, together with Lemma 2.1, to obtain a more accurate
expression for the score function

Since, by assumption, for
, the first terms in the series in the numerator above

vanish. Therefore, equals

For , the numerator and denominator above are both
bounded functions of , and the denominator is bounded away
from zero (because of the term corresponding to ). There-
fore, for each , the score function is of
order . For the first term in (39) we thus have

which, again, when divided by , tends to zero as .
Thus only the second term in (39) contributes. For this term,

we similarly obtain that the limit

equals

(40)
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and the limit

equals

(41)

Finally, combining the above limits with (39) yields

as claimed.

Proof of Lemma 7.2: The key is to observe that for ULC,
since is decreasing in , and is in-
creasing in , there exists an integer such that

for and for
. Hence:

and,

Further, by Cauchy-Schwarz, for

(42)

while for

(43)

This means that (with the reversal of order of summation justi-
fied by Fubini, since all the terms have the same sign)

(44)

(45)

and the result holds. Note that the inequality in (44) follows by
(42) and (43), and the inequality in (45) by the discussion above.
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