N-Congruences Between Quadratic Twists of Elliptic Curves

Sam Frengley
University of Cambridge

18 August 2021

Congruences of Elliptic Curves

Definition

Let K be a field of characteristic 0 . Let E / K and E^{\prime} / K be elliptic curves and $N \geq 2$. We say that E and E^{\prime} are N-congruent if $E[N] \cong E^{\prime}[N]$ as Galois modules.

Examples

- Let E be given by a Weierstrass equation $y^{2}=f(x)$. Then the quadratic twist E^{d} given by $d y^{2}=f(x)$ is 2-congruent to E.
- Let E be given by a Weierstrass equation $F(X, Y, Z)=0$. Then the family given by $F+\lambda H(F)=0$ are 3-congruent to E (where H is the Hessian).
- Let $\phi: E \rightarrow E^{\prime}$ be an isogeny of degree coprime to N, defined over K. Then ϕ induces an N-congruence (such congruences are said to be trivial).

The Big Conjecture

Conjecture (Frey-Mazur)

There are no non-trivial N-congruences over \mathbb{Q} for $N>$? for some ?
In fact when $N=p$ is a prime number, this has been refined by Fisher who has conjectured that there are no non-trivial p-congruences for $p>17$.

How to Construct Examples of Congruences?

- Searching through the LMFDB database of elliptic curves (see Cremona-Freitas).
- Fix an elliptic curve E / \mathbb{Q}, then the elliptic curves E^{\prime} / \mathbb{Q} which are (N, r)-congruent to E correspond to rational points on a twist, $X_{E}^{r}(N)$, of the modular curve $X(N)$.
- There exists a surface, $Z(N, r) / \mathbb{Q}$, which parametrises pairs $\left(E, E^{\prime}\right)$ of (N, r)-congruent elliptic curves.
- The "quadratic twists" construction of Halberstadt and Cremona-Freitas.

The State of Things

N	Known non-trivial N-congruences over \mathbb{Q}	Notes
≤ 13	∞-many pairs with distinct j-invariants	Due to Rubin-Silverberg, Halberstadt-Kraus, Kumar, Poonen-Schaefer-Stoll, Chen, Fisher, and Papadopulos.
14	∞-many pairs	Due to Halberstadt, all pairs are quadratic twists (i.e., $\left.\left(E, E^{d}\right)\right)$.
17	2 pairs	Due to Fisher, conjectured to be the only 17-congruences.
22	∞-many pairs	Due to Halberstadt, all pairs are quadratic twists
Primes ≥ 19	Fisher has conjectured there are no pairs	

Infinite Families of Congruences Between Quadratic Twists

Theorem (F.)
There are infinitely many j-invariants of elliptic curves E / \mathbb{Q} which admit a (non-trivial) N-congruence with a non-trivial quadratic twist if and only if either $N \leq 12, N \leq 24$ is even, $N=28$ or $N=36$.

Examples of N-Congruences for Large N

Theorem (F.)
We have
(1) The elliptic curve with Weierstrass equation

$$
\begin{aligned}
& y^{2}+y=x^{3}+468240736152891010 x \\
&-148374586624464876247316957
\end{aligned}
$$

is 48-congruent (over \mathbb{Q}) to its quadratic twist by its discriminant.
(2) The elliptic curve with Weierstrass equation

$$
\begin{array}{rl}
y^{2}+x y=x^{3}-x^{2}-27317 & 6601587417 x \\
& -1741818799948905109620
\end{array}
$$

is 30-congruent (over \mathbb{Q}) to its quadratic twist by -214663 .

The Idea for p-Congruences

Theorem (Halberstadt, Cremona-Freitas)
 Let p be an odd prime. Then the non-cuspidal K-points on the modular curves $X_{n s}^{+}(p)$ and $X_{s}^{+}(p)$ parametrise elliptic curves which admit a p-congruence (over K) with a quadratic twist.

Halberstadt's results for $N=14$ and $N=22$ follow from the theorem.
The curve $X_{n s}^{+}(7)$ (respectively $\left.X_{n s}^{+}(11)\right)$ has infinitely many rational points

- hence give us infinitely many (j-invariants of) elliptic curves, E / \mathbb{Q} admitting a 7 (respectively 11) congruence with a quadratic twist. But quadratic twists are also 2-congruent.
The following lemma shows that infinitely many of these congruences are non-trivial.

Lemma

An elliptic curve E admits an isogeny with a quadratic twist if and only if E has complex multiplication.

Aside: The Class Number 1 Problem

Recall there is a bijection
$\left\{\begin{array}{l}\text { Orders } \mathcal{O} \text { in imaginary } \\ \text { quadratic fields } K / \mathbb{Q} \text { with } \\ \text { class number, } h(\mathcal{O})=1\end{array}\right\} \leftrightarrow\left\{\begin{array}{l}j \text {-invariants of elliptic } \\ \text { curves } E / \mathbb{Q} \text { with } C M\end{array}\right\}$
In fact, every elliptic curve with CM by an order of discriminant $d>4 p$ give rise to a point on $X_{n s}^{+}(p)$ (see Serre's Lectures on the MW Theorem). In particular, solving the Frey-Mazur conjecture for p-congruences between quadratic twists is in itself very difficult!

The Idea of Our Construction for 15-Congruences

Consider the fibre product

$$
\underset{\substack{\downarrow \\ X_{n s}^{+}(3) \\ \downarrow \\ X_{X(1)}^{+}}}{ } X_{n s}^{+}(5) \longrightarrow X_{n s}^{+}(5)
$$

Then $X_{n s}^{+}(15)=X_{n s}^{+}(3) \times_{X(1)} X_{n s}^{+}(5)$ parametrises elliptic curves E / K admitting a 3 -congruence with a quadratic twist E^{d}, and a 5 -congruence with a (possibly different) quadratic twist $E^{d^{\prime}}$. We the construct a double cover C of $X_{n s}^{+}(15)$ which corresponds to requiring that these quadratic twists are in fact isomorphic - i.e., $d d^{\prime}$ is a square in K.

The Idea of Our Construction for 15-Congruences

It turns out in this case that C is a genus 2 curve, and by searching for points, we find that there is a 15 -congruence $(\operatorname{over} \mathbb{Q})$ between the elliptic curve

$$
\begin{aligned}
& E: y^{2}+x y=x^{3}-x^{2}-273176601587417 x \\
&-1741818799948905109620
\end{aligned}
$$

and its quadratic twist by -214663 .
But then E is 30 -congruent to this quadratic twist (since all quadratic twists are trivially 2-congruent).
In fact, we can prove that the only rational points on C are either cusps, CM points (i.e., correspond to trivial 15 -congruences), or give rise to the 15-congruence above.

