N-Congruences Between Quadratic Twists of Elliptic Curves

Sam Frengley

University of Cambridge

18 August 2021

Congruences of Elliptic Curves

Definition

Let K be a field of characteristic 0. Let E/K and E'/K be elliptic curves and $N \ge 2$. We say that E and E' are N-congruent if $E[N] \cong E'[N]$ as Galois modules.

Examples

- Let E be given by a Weierstrass equation $y^2 = f(x)$. Then the quadratic twist E^d given by $dy^2 = f(x)$ is 2-congruent to E.
- Let *E* be given by a Weierstrass equation F(X, Y, Z) = 0. Then the family given by $F + \lambda H(F) = 0$ are 3-congruent to *E* (where *H* is the Hessian).
- Let φ : E → E' be an isogeny of degree coprime to N, defined over K. Then φ induces an N-congruence (such congruences are said to be trivial).

The Big Conjecture

Conjecture (Frey-Mazur)

There are no non-trivial N-congruences over \mathbb{Q} for N >? for some ?.

In fact when N = p is a prime number, this has been refined by Fisher who has conjectured that there are no non-trivial *p*-congruences for p > 17.

How to Construct Examples of Congruences?

- Searching through the LMFDB database of elliptic curves (see Cremona-Freitas).
- Fix an elliptic curve E/\mathbb{Q} , then the elliptic curves E'/\mathbb{Q} which are (N, r)-congruent to E correspond to rational points on a twist, $X_E^r(N)$, of the modular curve X(N).
- There exists a surface, $Z(N, r)/\mathbb{Q}$, which parametrises pairs (E, E') of (N, r)-congruent elliptic curves.
- The "quadratic twists" construction of Halberstadt and Cremona-Freitas.

The State of Things

Ν	Known non-trivial N -congruences over $\mathbb Q$	Notes
≤ 13	∞ -many pairs with distinct <i>j</i> -invariants	Due to Rubin-Silverberg, Halberstadt-Kraus, Kumar, Poonen-Schaefer-Stoll, Chen, Fisher, and Papadopulos.
14	∞ -many pairs	Due to Halberstadt, all pairs are quadratic twists (i.e., (E, E^d)).
17	2 pairs	Due to Fisher, conjectured to be the only 17-congruences.
22	∞ -many pairs	Due to Halberstadt, all pairs are quadratic twists
$Primes \geq 19$	Fisher has conjectured there are no pairs	

Infinite Families of Congruences Between Quadratic Twists

Theorem (F.)

There are infinitely many j-invariants of elliptic curves E/\mathbb{Q} which admit a (non-trivial) N-congruence with a non-trivial quadratic twist if and only if either $N \leq 12$, $N \leq 24$ is even, N = 28 or N = 36.

Examples of N-Congruences for Large N

Theorem (F.)

We have

Interpretation The elliptic curve with Weierstrass equation

$$y^{2} + y = x^{3} + 468240736152891010x - 148374586624464876247316957$$

is 48-congruent (over Q) to its quadratic twist by its discriminant.
The elliptic curve with Weierstrass equation

 $y^2 + xy = x^3 - x^2 - 273176601587417x - 1741818799948905109620$

is 30-congruent (over \mathbb{Q}) to its quadratic twist by -214663.

The Idea for *p*-Congruences

Theorem (Halberstadt, Cremona-Freitas)

Let p be an odd prime. Then the non-cuspidal K-points on the modular curves $X_{ns}^+(p)$ and $X_s^+(p)$ parametrise elliptic curves which admit a p-congruence (over K) with a quadratic twist.

Halberstadt's results for N = 14 and N = 22 follow from the theorem. The curve $X_{ns}^+(7)$ (respectively $X_{ns}^+(11)$) has infinitely many rational points - hence give us infinitely many (*j*-invariants of) elliptic curves, E/\mathbb{Q} admitting a 7 (respectively 11) congruence with a quadratic twist. But quadratic twists are also 2-congruent.

The following lemma shows that infinitely many of these congruences are non-trivial.

Lemma

An elliptic curve E admits an isogeny with a quadratic twist if and only if E has complex multiplication.

Aside: The Class Number 1 Problem

Recall there is a bijection

$$egin{pmatrix} {
m Orders} \ {\cal O} \ {
m in \ imaginary} \ {
m quadratic \ fields} \ {\cal K}/{\mathbb Q} \ {
m with} \ {
m curves} \ E/{\mathbb Q} \ {
m with} \ {
m Curves} \ E/{\mathbb Q} \ {
m with} \ {
m CM} \ {
m curves} \ {
m curves} \ E/{\mathbb Q} \ {
m with} \ {
m CM} \ {
m curves} \$$

In fact, every elliptic curve with CM by an order of discriminant d > 4p give rise to a point on $X_{ns}^+(p)$ (see Serre's *Lectures on the MW Theorem*). In particular, solving the Frey-Mazur conjecture for *p*-congruences between quadratic twists is in itself very difficult!

The Idea of Our Construction for 15-Congruences

Consider the fibre product

Then $X_{ns}^+(15) = X_{ns}^+(3) \times_{X(1)} X_{ns}^+(5)$ parametrises elliptic curves E/K admitting a 3-congruence with a quadratic twist E^d , and a 5-congruence with a (possibly different) quadratic twist $E^{d'}$. We the construct a double cover C of $X_{ns}^+(15)$ which corresponds to requiring that these quadratic twists are in fact *isomorphic* - i.e., dd' is a square in K.

The Idea of Our Construction for 15-Congruences

It turns out in this case that C is a genus 2 curve, and by searching for points, we find that there is a 15-congruence (over \mathbb{Q}) between the elliptic curve

$$E: y^2 + xy = x^3 - x^2 - 273176601587417x - 1741818799948905109620$$

and its quadratic twist by -214663.

But then E is 30-congruent to this quadratic twist (since all quadratic twists are trivially 2-congruent).

In fact, we can prove that the only rational points on C are either cusps, CM points (i.e., correspond to trivial 15-congruences), or give rise to the 15-congruence above.