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Motivation: isogeny-based cryptography

Isogeny-based cryptography is a type of post-quantum cryptography that
has been considered in NIST's standardisation process.

The general isogeny problem (in dimension 1) underlies the security of
many isogeny-based schemes (e.g., SQIsign). Similarly, we consider the
dimension 2 isogeny problem an upper bound for the security of dimension
2 isogeny-based protocols.

The SIDH attacks also showed that understanding higher dimensional
isogenies is needed to navigate the isogeny graph in dimension 1.

Much is conjectured, but little is known about the isogeny problem in
dimension 2.

In this work we look at the problem in dimension 2 and decrease the
concrete complexity of the best attack due to Costello-Smith.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 2/12



Moving to dimension 2

To generalise supersingular elliptic curves over [, to genus 2, we consider

superspecial (principally polarised) abelian surfaces over IF ..
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Moving to dimension 2

To generalise supersingular elliptic curves over [, to genus 2, we consider

superspecial (principally polarised) abelian surfaces over IF ..

There are two types:
@ Products of supersingular elliptic curves E x E’

@ Jacobians Jac(C) of genus 2 curves C

We study (N, N)-isogenies, which generalise N-isogenies to dimension 2
(kernel now generated by two points).

For the purposes of this talk, we only need to keep in mind that there are
two types of surfaces: “reducible” and “non-reducible”.
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General Isogeny Problem in Two Dimensions

In its most general form, the superspecial isogeny problem in two
dimensions asks to find an isogeny

b A— A,

between two superspecial (p.p.) abelian surfaces A/F . and A'/FF .
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General Isogeny Problem in Two Dimensions

In its most general form, the superspecial isogeny problem in two
dimensions asks to find an isogeny

p: A— A,
between two superspecial (p.p.) abelian surfaces A/F . and A'/FF .

The general isogeny problem can be viewed as finding a path between two
nodes in the superspecial isogeny graph.
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The Superspecial Isogeny Graph I'(N; p)

Let p > N be a large prime.
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The Superspecial Isogeny Graph I'(N; p)
Let p > N be a large prime. [(N; p) is the graph with vertex set
S(p) = {Superspecial p.p. abelian surfaces over 2 (up to isomorphism)},

and whose edges are (N, N)-isogenies (defined over Fp).
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The Superspecial Isogeny Graph I'(N; p)
Let p > N be a large prime. T(N; p) is the graph with vertex set

S(p) = {Superspecial p.p. abelian surfaces over 2 (up to isomorphism)},

and whose edges are (N, N)-isogenies (defined over Fp).
S(p) is equal to the disjoint union of:

E(p) :={AeS(p) : A~ E x E' with E, E’ supersingular ECs}.

J(p) := S(p) \ €(p)
={AeS(p) : A= Jac(C)}
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The Superspecial Isogeny Graph I'(N; p)
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Attacking the General Isogeny Problem: Costello-Smith
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Attacking the General Isogeny Problem: Costello-Smith
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Attacking the General Isogeny Problem: Costello-Smith
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Attacking the General Isogeny Problem: First step

Summary: Using (2, 2)-isogenies, Costello-Smith take walks in ['(2; p)
and detect whether nodes are (2, 2)-isogenous to a product.
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Attacking the General Isogeny Problem: First step

Summary: Using (2, 2)-isogenies, Costello-Smith take walks in ['(2; p)
and detect whether nodes are (2, 2)-isogenous to a product.

First step in more detail:
@ We start on a node Ag € J(p).
@ Take a step in [(2; p) via a (2,2)-isogeny ¢1: Ay — As.

© We can determine whether A; € £(p). If not, take another step
(;52: Al — A2.

© Repeat previous step until finding A; € £(p).

Question: Taking steps in ['(2; p), can we detect whether the current
node A; is in (N, N)-split (i.e., (N, N)-isogenous to a product) for N > 27?

Naive Answer: Compute all (N, N)-isogenies from A;, but this is not
efficient. Can we make the detection efficient?
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Detecting an (N, N)-splitting

There exist (easily computable) functions a(A) = (a1(A), a2(A), az(A))
which assigns to A a triple of elements of ;> which uniquely determine Al

tUp to isomorphism. These are (normalised) Igusa invariants.
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Detecting an (N, N)-splitting

There exist (easily computable) functions a(A) = (a1(A), a2(A), az(A))
which assigns to A a triple of elements of ;> which uniquely determine Al

For N < 11, Kumar [Kum15] provides rational functions i1(r,s), ia(r,s),

i3(r,s) € Fp(r,s), such that if there exists a simultaneous solution
ro, so € Fp of

ii(r,s) = ai(A)
i(r,s) = az(A)
I3(I’,S) = 043(/4)

and the denominators do not vanish at (rg, sp), then A is (N, N)-split.

tUp to isomorphism. These are (normalised) Igusa invariants.
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Detecting an (N, N)-splitting

Let fi(r,s) = ix(r,s) — ax(A). We determine if there exist ry, sp by:
(1) Computing resultants of (the numerators of) fi(r,s), f2(r,s) and
f(r,s), f3(r,s) (with respect to r) to get resi(s), resa(s).
(2) Compute ged(resi(s), resa(s)).
> If degree is 0, then A is not (N, N)-split.
» Otherwise, A is (N, N)-split.

In fact, we obtain a more efficient method by precomputing the resultants
generically.
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Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello-Smith algorithm
and decreasing its concrete complexity.

Q O O 1) Precomputation: determine the set of D

C N’s for which we detect (I, N)-splittings.

O O O We do this by finding 2 < N < 11 that minimise
O number of F, multiplications

O number of nodes revealed and inspected O

T < UOU
OQ QOQOOOO
QOQQQ O O

OO
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Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello-Smith algorithm
and decreasing its concrete complexity.

O
O O For this example
© o0 WetakeN:FQ,3,5} O
o 000 7™
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Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello-Smith algorithm
and decreasing its concrete complexity.

O
O O O O O O 2) Take a step O

in I'(2; p)

o 0 L0075 ¢
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Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello-Smith algorithm
and decreasing its concrete complexity.

O 00
O 00
O50 7070 On 0O
O O O O OO 4)Efficient (N, N)-splitting O
O O O O detection for N € {2,3,5}
(using Kumar’s map)
©-:8,900Q0.0 50"
ONe Op 200~ o
O O O 0 O
O o 00 OO
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Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello-Smith algorithm
and decreasing its concrete complexity.

O O O 14n0(i\e[s:ch2ecked
O Q\O O 8 000 O
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Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello-Smith algorithm
and decreasing its concrete complexity.

N=3
O / O O O O P 40* nodes checked
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Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello-Smith algorithm
and decreasing its concrete complexity.

Lo N=5
O .'I Q_E?’/O_\ 156* nodes checked
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Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello-Smith algorithm
and decreasing its concrete complexity.
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Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello-Smith algorithm
and decreasing its concrete complexity.
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Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello-Smith algorithm
and decreasing its concrete complexity.
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Results

We implemented and optimised the first step of Costello-Smith attack
with and without detection of (N, N)-splitting. We ran these (for primes p
of bitsizes 50 — 1000) until reaching 10% F, multiplications.
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Results

We implemented and optimised the first step of Costello-Smith attack
with and without detection of (N, N)-splitting. We ran these (for primes p
of bitsizes 50 — 1000) until reaching 10% F, multiplications. We counted
the number of nodes revealed and IF, multiplications per node revealed.

Walks in I2(2; p) Walks in I'2(2; p)
without additional searching|w. split searching in '2(N; p)
[CS20] This work
prime bits [nodes per| muls per set nodes per|muls per|imprv.
p p | 108 muls node [N € {...}|10® muls| node |factor
211324 1] 50 | 172712 579 {2,3} |2830951 35 16.5
227377 — 11150 | 63492 1575 {3,4} |1858912| 54 |29.2
2181.343 11250 | 34083 2934 {4,6} |1771608 | 56 52.4
21133244 _1)500 | 20239 4941 {4,6} |1667360 | 60 82.4
21073437 _ 11800 | 13228 7560 {4,6} |1548504| 65 |116.3
2721.3176 _ 111000, 8814 11346 {4,6} |1403752| 71 |159.8
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Results

We implemented and optimised the first step of Costello-Smith attack
with and without detection of (N, N)-splitting. We ran these (for primes p
of bitsizes 50 — 1000) until reaching 10% F, multiplications. We counted
the number of nodes revealed and IF, multiplications per node revealed.

Walks in I2(2; p) Walks in I'2(2; p)
without additional searching|w. split searching in '2(N; p)
[CS20] This work
prime bits [nodes per| muls per set nodes per|muls per|imprv.
p p | 108 muls node [N € {...}|10® muls| node |factor
211324 1] 50 | 172712 579 {2,3} |2830951 35 16.5
227377 — 11150 | 63492 1575 {3,4} |1858912| 54 |29.2
2181.343 11250 | 34083 2934 {4,6} |1771608 | 56 52.4
21133244 _1)500 | 20239 4941 {4,6} |1667360 | 60 82.4
21073437 _ 11800 | 13228 7560 {4,6} |1548504| 65 |116.3
2721.3176 _ 111000, 8814 11346 {4,6} |1403752| 71 |159.8

Any questions?
eprint.iacr.org/2022/1736
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