1. Prove that two points $w, z \in \mathbb{C}_{\infty}$ correspond to antipodal points in S^{2} under stereographic projection if, and only if, $w=J(z)$ for the transformation $J(z)=-1 / \bar{z}$.
Show that any Möbius transformation T other than the identity has either one or two fixed points on $\mathbb{C} \cup\{\infty\}$. Show that the Möbius transformation corresponding under stereographic projection to a non-trivial rotation has two antipodal fixed points.

Show that a Möbius transformation $T: z \mapsto(a z+b) /(c z+d)$ with $a d-b c=1$ satisfies $J^{-1} T J=T$ precisely when $d=\bar{a}$ and $c=-\bar{b}$.
2. Prove that Möbius transformations of the extended complex plane \mathbb{C}_{∞} preserve cross-ratios. Let the points $u, v \in \mathbb{C}$ correspond under stereographic projection to points $\boldsymbol{P}, \boldsymbol{Q} \in S^{2}$. Show that the cross-ratio of the four points $u, v,-1 / \bar{u},-1 / \bar{v}$ (in some order) is equal to $-\tan ^{2} \frac{1}{2} d(\boldsymbol{P}, \boldsymbol{Q})$, where $d(\boldsymbol{P}, \boldsymbol{Q})$ is the spherical distance between \boldsymbol{P} and \boldsymbol{Q}.
3. Let $J: z \mapsto 1 / \bar{z}$ be inversion in the unit circle and recall that Möbius transformations map inverse points to inverse points.
Show that, a Möbius transformation T maps the unit circle onto itself if and only if $J^{-1} T J=T$. Deduce that a Möbius transformation

$$
T: z \mapsto \frac{a z+b}{c z+d} \quad \text { with } \quad a d-b c=1
$$

maps the unit disc \mathbb{D} onto itself if and only if $d=\bar{a}$ and $c=\bar{b}$. Show that every such transformation is an isometry for the hyperbolic metric.
Show that we can also write these Möbius transformations as

$$
z \mapsto \zeta\left(\frac{z-z_{o}}{1-\overline{z_{0}} z}\right)
$$

for some $z_{o} \in \mathbb{D}$ and some $\zeta \in \mathbb{C}$ of modulus 1 .
4. Let Γ be the hyperbolic circle $\left\{z \in \mathbb{D}: \rho\left(z, z_{0}\right)=\rho_{o}\right\}$ in the disc \mathbb{D}. Show that it is also an Euclidean circle and a spherical circle but that the Euclidean or spherical centre and radius can be different from the hyperbolic centre z_{o} and radius ρ_{o}.
5. Show that a hyperbolic circle with hyperbolic radius r has length $2 \pi \sinh r$ and encloses a disc of hyperbolic area $4 \pi \sinh ^{2} \frac{1}{2} r$. Sketch these as functions of r.
6. Show that two hyperbolic lines have a common orthogonal line if and only if they are ultraparallel. Prove that, in this case, the common orthogonal line is unique.
7. Fix a point P on the boundary of the unit disc \mathbb{D}. Describe the curves in \mathbb{D} that are orthogonal to every hyperbolic line that passes through P.
8. Prove that a hyperbolic N-gon with interior angles $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$ has area $(N-2) \pi-\sum \alpha_{j}$. Show that, for every $N \geqslant 3$ and every α with $0<\alpha<\left(1-\frac{2}{N}\right) \pi$, there is a regular N-gon with all angles equal to α.
9. Show that in a spherical, Euclidean or hyperbolic triangle, the angle bisectors are lines and they meet at a point.
10. Let ℓ and m be two fixed hyperbolic lines that cross at an angle α at a point \boldsymbol{A}. Another line n crosses ℓ at a (movable) point \boldsymbol{B} and a fixed angle β. If n also crosses m at an angle θ, show that θ varies monotonically as the point \boldsymbol{B} moves along the line ℓ.
Deduce that there is a hyperbolic triangle with angles α, β, γ provided that $\alpha+\beta+\gamma<\pi$.
11. State the sine rule for hyperbolic triangles. Show that $a \leqslant b \leqslant c$ if and only if $\alpha \leqslant \beta \leqslant \gamma$.
12. If w, z are points in the upper half-plane, prove that the hyperbolic distance between them is $2 \tanh ^{-1}|(w-z) /(w-\bar{z})|$.
13. In this question we will show how to deduce the sine rule and second cosine rule for a hyperbolic triangle from the first cosine rule.
Use the cosine rule to show that

$$
\cos \alpha=\frac{\cosh b \cosh c-\cosh a}{\sqrt{\cosh ^{2} b-1} \sqrt{\cosh ^{2} c-1}} \quad \text { and } \quad \sin ^{2} \alpha=\frac{D^{2}}{\left(\cosh ^{2} b-1\right)\left(\cosh ^{2} c-1\right)}
$$

where $D^{2}=1-\cosh ^{2} a-\cosh ^{2} b-\cosh ^{2} c+2 \cosh a \cosh b \cosh c$. Deduce that

$$
\frac{\sin ^{2} \alpha}{\sinh ^{2} a}=\frac{D^{2}}{\left(\cosh ^{2} a-1\right)\left(\cosh ^{2} b-1\right)\left(\cosh ^{2} c-1\right)}
$$

Show that, since the right hand side is symmetric in a, b, c, this implies the hyperbolic sine rule. In a similar way, show that

$$
\cos \beta \cos \gamma+\cos \alpha=\frac{D^{2} \cosh a}{\left(\cosh ^{2} a-1\right) \sqrt{\cosh ^{2} b-1} \sqrt{\cosh ^{2} c-1}}
$$

and deduce the second cosine rule:

$$
\cos \alpha=-\cos \beta \cos \gamma+\sin \beta \sin \gamma \cosh a .
$$

Deduce that two hyperbolic triangles are congruent if and only if they have the same angles.
14. Let Δ be a triangle on a sphere of radius R, with angles α, β, γ and sides of length a, b, c. Prove a version of the cosine and sine rules for this triangle.
Show that, if we formally set R equal to the complex number i, then we obtain the hyperbolic cosine and sine rules. (Thus hyperbolic geometry is the geometry of a sphere with radius i and curvature $R^{2}=-1$.)
15. The quaternions \mathcal{Q} consist of all 2×2 complex matrices

$$
q=\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right)
$$

with addition and multiplication as for the matrices. Every such quaternion q can be written as $q_{0} \mathbf{1}+q_{1} \boldsymbol{i}+q_{2} \boldsymbol{j}+q_{3} \boldsymbol{k}$ where

$$
\mathbf{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) ; \quad \boldsymbol{i}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) ; \quad \boldsymbol{j}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) ; \quad \boldsymbol{k}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) .
$$

Show that these four elements, together with their additive inverses $-\mathbf{1},-\boldsymbol{i},-\boldsymbol{j},-\boldsymbol{k}$ form a noncommutative group: the Quaternion 8 -group. We can identify the subspace of \mathcal{Q} spanned by $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ with \mathbb{R}^{3} by making $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ correspond to the standard basis vectors of \mathbb{R}^{3}. We can then write any quaternion q as $q_{0} \mathbf{1}+\boldsymbol{v}$ for a scalar q_{0} and a vector $\boldsymbol{v} \in \mathbb{R}^{3}$. Prove that we then have

$$
\left(p_{0} \mathbf{1}+\boldsymbol{u}\right)\left(q_{0} \mathbf{1}+\boldsymbol{v}\right)=\left(p_{0} q_{0}-\boldsymbol{u} \cdot \boldsymbol{v}\right) \mathbf{1}+\left(p_{0} \boldsymbol{v}+q_{0} \boldsymbol{u}\right)+(\boldsymbol{u} \times \boldsymbol{v})
$$

In particular, for two vectors $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{3}$ we have $\boldsymbol{u} \boldsymbol{v}+\boldsymbol{v} \boldsymbol{u}=-2(\boldsymbol{u} \cdot \boldsymbol{v}) \mathbf{1}$.
The conjugate of a quaternion $q=q_{o} \mathbf{1}+\boldsymbol{v}$ is $\bar{q}=q_{0} \mathbf{1}-\boldsymbol{v}$. Show that $q \bar{q}=\|q\|^{2} \mathbf{1}=\bar{q} q$ where $\|q\|^{2}=q_{0}^{2}+\|\boldsymbol{v}\|^{2}$. Prove that, for any unit vector $\boldsymbol{u} \in \mathbb{R}^{3}$, we have

$$
\boldsymbol{u} \boldsymbol{x} \boldsymbol{u}=\boldsymbol{x}-2(\boldsymbol{x} \cdot \boldsymbol{u}) \boldsymbol{u}
$$

So the map $T_{\boldsymbol{u}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} ; \boldsymbol{x} \mapsto \boldsymbol{u x u}$ is reflection in the plane perpendicular to \boldsymbol{u}. By writing any isometry of S^{2} as a composite of reflection, or otherwise, show that for each quaternion q with $\|q\|=1$ the map

$$
T_{q}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} ; \boldsymbol{x} \mapsto q \boldsymbol{x} \bar{q}
$$

is an orientation preserving isometry of S^{2}. Hence show that

$$
T: S(\mathcal{Q}) \rightarrow \mathrm{SO}(3) ; \quad q \mapsto T_{q}
$$

is a group homomorphism from the unit sphere $S(\mathcal{Q})$ (which is a 3-dimensional sphere S^{3}) onto $\mathrm{SO}(3)$ with kernel $\{-\mathbf{1}, \mathbf{1}\}$.

Please send any comment or corrections to t.k.carne@dpmms.cam.ac.uk.
Supervisors can obtain an annotated version of this example sheet from DPMMS.

