1. Two linearly independent vectors $\mathbf{w}_1, \mathbf{w}_2$ are a basis for a lattice Λ if $\Lambda = \mathbb{Z}\mathbf{w}_1 + \mathbb{Z}\mathbf{w}_2$. Show that the pair $\mathbf{w}'_1, \mathbf{w}'_2$ are also a basis for Λ if, and only if,

$$\mathbf{w}_1' = a\mathbf{w}_1 + b\mathbf{w}_2$$
$$\mathbf{w}_2' = c\mathbf{w}_1 + d\mathbf{w}_2$$

for a matrix $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with integer entries that has an inverse M^{-1} which also has integer entries. Prove that $ad - bc = \pm 1$.

- 2. Λ is a rank 2 lattice in \mathbb{R}^2 . Choose a vector $\boldsymbol{w}_1 \in \Lambda \setminus \{\boldsymbol{0}\}$ with norm $||\boldsymbol{w}_1||$ as small as possible. Then choose $\boldsymbol{w}_2 \in \Lambda \setminus \mathbb{Z}\boldsymbol{w}_1$ with norm as small as possible. Show that $\Lambda = \mathbb{Z}\boldsymbol{w}_1 + \mathbb{Z}\boldsymbol{w}_2$.
 - Let w_1 be a fixed vector. Draw the region of possible values for w_2 . Mark on your picture the points w_2 that correspond to lattices $\mathbb{Z}w_1 + \mathbb{Z}w_2$ that have a reflective symmetry.
- 3. Prove the formula for the chordal distance between two points $z_1, z_2 \in \mathbb{C} \cup \{\infty\}$ algebraically by using the formula for stereographic projection.
- 4. Let Γ_1 , Γ_2 be two disjoint circles on the Riemann sphere. Show that there is a Möbius transformation that maps them to two circles in \mathbb{C} centred on 0.
- 5. Find all of the Möbius transformations that commute with M_k for a fixed k. Hence describe the group

$$Z(T) = \{A \in \text{M\"ob} : A \circ T = T \circ A\}$$

for an arbitrary Möbius transformation T. Describe the set $\{A(z_o): A \in Z(T)\}$ for z_o a point in \mathbb{P} .

- 6. Suppose that the Möbius transformation T is represented by the matrix M but that $\det M \neq 1$. Show that T is parabolic if and only if $(\operatorname{tr} M)^2 = 4 \det M$. Establish similar conditions for T to be elliptic, hyperbolic or loxodromic.
- 7. Prove that the composition of two inversions is a Möbius transformation. Show that every Möbius transformation can be written as the composition of inversions. How many inversions do we need?
- 8. Show that inversion in any circle is given by a map

$$J: z \mapsto \frac{a\overline{z} + b}{c\overline{z} + d}$$

for some complex numbers a, b, c, d with ad - bc = 1. For which choices of a, b, c, d is this map J an involution, that is $J^2 = I$? Are these all inversions?

- 9. How many square roots of a Möbius transformation are there? This means, for each Möbius transformation T, how many Möbius transformations S are there with $S^2 = T$?
- 10. Show that a Möbius transformation T represented by a matrix $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is an isometry of the Riemann sphere for the chordal metric if, and only if, $M \in SU(2)$. Deduce that there is a group homomorphism $\phi : SU(2) \to SO(3)$ with kernel $\{I, -I\}$. For each point $z_o \in \mathbb{P}$, show that there is a matrix $M \in SU(2)$ with $T(0) = z_o$. Hence show that ϕ is surjective and so $SU(2)/\{I, -I\} \cong SO(3)$.
- 11. Let p, q be two distinct points in \mathbb{P} . Show that there are infinitely many inversions that interchange p and q. Draw a picture illustrating the circles Γ for which inversion in Γ interchanges p and q. Now suppose that p' is another point of the Riemann sphere distinct from p and q. Mark on your picture all the possible values for J(p') for inversions J that interchange p and q.
 - Given 4 distinct points p, q, p', q', when can we find an inversion which interchanges both p & q and also p' & q'.
- 12. Show that there is an isometry T of \mathbb{D} with the hyperbolic metric that maps z_1 and z_2 to w_1 and w_2 respectively if, and only if, $\rho(z_1, z_2) = \rho(w_1, w_2)$.

13. Show that every straight line in the Euclidean plane can be written as

$$\ell = \{t\boldsymbol{u} + \boldsymbol{v} : t \in \mathbb{R}\}$$

for u a unit vector in \mathbb{R}^2 and v orthogonal to u. Are u and v uniquely determined by the line ℓ ? Deduce that the set of lines in the Euclidean plane corresponds to the points of a Möbius band. Is the same true for geodesics in the hyperbolic plane? (Hint: Consider the endpoints of the geodesic.) Is the same true for great circles in Riemann sphere?

 $Please \ send \ any \ comments \ or \ corrections \ to \ me \ at: \ t.k. carne@dpmms.cam.ac.uk \ .$