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Proposition 8.2 Möbius transformations map circles to circles 34
Proposition 8.3 34
Proposition 8.4 Isometries of the Riemann sphere. 35
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1 INTRODUCTION

1.1 Symmetry

This course will explore symmetry groups. We will look at examples of symmetry groups acting
on various different geometric spaces. We wish to have a large variety of symmetries, so we will look at
the simplest and most symmetric spaces, beginning with the Euclidean spaces R2, R3 and the spheres
S1, S2. There is also a even more important example, the hyperbolic spaces, that we will look at later in
the course. Each of these geometric spaces has a metric and we will study the isometries that preserve
the distances between any pair of points.

These isometries are represented by matrices, so we will usually be considering straightforward
matrix groups such as O(2),O(3),SL(2, R),SL(2, C). These groups act on the geometric space and we
will want to study how they do so. We will look at various patterns on the geometric spaces and the
subgroups that preserve these patterns and so are symmetries of the patterns.

A first example is the “Platonic Solids”:

These are the five convex regular solids. We will want to consider what makes them regular and prove
that there are only five.
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A second is the “wallpaper patterns”:

Andrew Crompton

There are 17 different groups of symmetries for wallpaper patterns.
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Then there are tessellations of the hyperbolic plane:

M.C. Escher, Circle Limit IV (1960)
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Studying symmetry groups of the hyperbolic plane will lead us to consider limit sets which are
fractal. For example:

Sierpiński Gasket Kleinian Limit Set

and show how to calculate their dimension.

Although many of the earlier courses in the Tripos are relevant to this one, there is rather little
that is required in the way of background. The most important background is from the “Vectors
and Matrices” and “Groups” courses. You will need to recall the definition of a group and how it
acts on a set. We will review this briefly. You also need to know about groups of matrices such as
GL(N, R),SL(N, C),SO(N),SU(N) and the group of Möbius transformations:

z 7→ az + b

cz + d
ad− bc = 1

acting on the Riemann sphere. We will also use the notion of a metric space and compactness from the
“Metric and Topological Spaces” course.

1.2 Group Actions

We will be interested in groups G that act as symmetries of a space X. So, each group element
g ∈ G gives us a symmetry X → X. More formally we say that a group G acts on a set X if there is a
map:

G×X → X ; (g, x) 7→ g · x

which satisfies:

(a) e · x = x for the identity e of G and any point x ∈ X;

(b) g · (h · x) = (gh) · x for g, h ∈ G and any point x ∈ X.

For example, the group GL(n, R) of invertible n × n real matrices acts on Rn by matrix multipli-
cation: (M,x) 7→ Mx. The group SL(2, C) of 2 × 2 complex matrices with determinant 1 acts on the
Riemann sphere by: ((

a b
c d

)
, z

)
7→ az + b

cz + d
.
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Note that the set Bij(X) of all bijections from X to itself forms a group under composition. If the
group G acts on X then the map θ : G → Bij(X) with

θ(g) : X → X ; x 7→ g · x

is a group homomorphism. For condition (a) shows that θ(e) = IX and condition (b) shows that
θ(g) ◦ θ(h)x = θ(gh)x.

Exercise:
1. Show that, for any group homomorphism θ : G → Bij(X), the group G acts on X by

(g, x) 7→ θ(g)x .

The group action is faithful or effective when θ : G → Bij(X) is injective.

Suppose that the group G acts on the set X. For each x ∈ X, the orbit Orb(x) is the set {g · x :
g ∈ G} of points that x is mapped to by G. It is a subset of the space X. The stabilizer Stab(x) is
{g ∈ G : g · x = x}. This is a subgroup of G.

Proposition 1.1 Orbit – Stabilizer theorem
If a group G acts on a set X, then the map

α : G/Stab(x) → Orb(x) ; gStab(x) 7→ g · x

is a bijection. When G is a finite group, this shows that

|G| = |Stab(x)||Orb(x)|

for each x ∈ X.

Proof:
Note that

g · x = h · x ⇔ (h−1g) · x = x

⇔ h−1g ∈ Stab(x)
⇔ g ∈ hStab(x)

So α maps each coset gStab(x) onto the element g · x in the orbit of x. Consequently, α is well defined
and a bijection. �

We can also consider the quotient of X by the group action. The relation

x ∼ y ⇔ y = g · x for some g ∈ G

is an equivalence relation on X with the orbits as the equivalence classes. The quotient X/G is the set
of equivalence classes. A fundamental set is a subset F of X that contains exactly one element from
each orbit.

For example, let Z be the additive group of integers acting on the plane R2 by translations:

n · x = x + ni .

The stabiliser of each point x ∈ R2 is the identity alone, while the orbit of x is the set {x + ni : n ∈ Z}
of all translations of x by integer multiples of the unit vector i. Let F be the strip{(

x1

x2

)
∈ R2 : 0 6 x1 < 1

}
.
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Each point y =
(

y1

y2

)
∈ R2 is equivalent to a point

(
by1c
y2

)
in F , so F is a fundamental set. Two

points in closed strip F are only equivalent to one another when they are points(
0
y2

)
and

(
1
y2

)
on the opposite edges. If we identify these points on the opposite edges then we obtain a cylinder. Each
orbit corresponds to a unique point of this cylinder, so we can identify this cylinder with the quotient
X/G.

Exercise:

2. Show that additive the group Z× Z acts on the plane R2 by(
n1

n2

)
·
(

x1

x2

)
=
(

x1 + n1

x2 + n2

)

and that the unit square S =
{(

x1

x2

)
: 0 6 x1 < 1 and 0 6 x2 < 1

}
is a fundamental set. Hence

show that we can identify the quotient R2/Z× Z with a torus.
Let u,v be two vectors in R2 and let P be the parallelogram:

{λu + µv : 0 6 λ < 1 and 0 6 µ < 1} .

Suppose that P is also a fundamental set for the action of Z× Z on R2. Show that

u =
(

a
c

)
, v =

(
b
d

)
for some integers a, b, c, d with ad− bc = ±1.

3. Consider the two maps:

A :
(

x1

x2

)
7→
(

x1

x2 + 1

)
; B :

(
x1

x2

)
7→
(

x1 + 1
−x2

)
acting on the plane R2. Let G be the group they generate. Is G Abelian? Find the orbit of a point
x under this group. Find a fundamental set and hence describe the quotient R2/G.
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2 ISOMETRIES OF EUCLIDEAN SPACE

2.1 Definitions

Let M be a metric space with d as its metric. A map T : M → M is an isometry if it is invertible
and preserves distances, so

d(T (x), T (y)) = d(x, y) for all x, y ∈ M .

The set of isometries of M form a group Isom(M) under composition.

In this section we want to study the isometries of the Euclidean space EN and especially of the
Euclidean plane. Euclidean space consists of RN with the Euclidean metric, which is defined in terms
of the inner product (or scalar product). The inner product of two vectors x,y ∈ RN is given by

x · y = x1y1 + x2y2 + . . . + xNyN .

We can use this to define the norm or length of a vector x as

||x|| =
√

(x · x) =
√

(x1x1 + x2x2 + . . . + xNxN ) .

The Euclidean metric is given by
d(x,y) = ||x− y|| .

For any vector a ∈ RN the map T : x 7→ x + a is clearly an isometry and is called the translation
by a. Let u be a unit vector. For each real number λ, the set π = {x : x · u = λ} is a translation
of a vector subspace of dimension N − 1. This is called a hyperplane. Any vector x can be written as
(x ·u)u + x⊥ with x⊥ perpendicular to u. Then reflection in π should leave x⊥ unaltered but map tu
to (2λ− t)u. Hence we define reflection in the hyperplane π to be

R : x 7→ x− 2(x · u− λ)u .

It is straightforward to check that

||R(x)−R(y)|| = ||(x− y)− 2((x− y) · u)u|| = ||x− y||

so the reflection is an Euclidean isometry.

We wish to describe all of the isometries of Euclidean space. It is easiest to do this by first
considering those isometries that fix the origin. Our first lemma shows that any such isometry is an
orthogonal linear map.

Recall that a linear map T : RN → RN is orthogonal when it preserves the inner product, so

T (x) · T (y) = x · y for all x,y ∈ RN .

Since the inner product is given by x ·y = xty, this is equivalent to the N×N -matrix M that represents
T satisfying

xtM tMy = xty for all x,y ∈ RN .

Hence, M tM = I. These matrices give us the orthogonal group

O(N) = {M : M is an N ×N real matrix with M tM = I} .

Lemma 2.1 Orthogonal maps as Euclidean isometries
Every orthogonal linear map B : RN → RN is an isometry for the Euclidean metric. Conversely, if
B : RN → RN is a Euclidean isometry that fixes the origin, the B is an orthogonal linear map.
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Proof:
Let B be an orthogonal linear map. Then

d(Bx, By)2 = ||Bx−By||2 = B(x− y) ·B(x− y) = (x− y) · (x− y) = d(x,y)2

so B is an isometry.

Now suppose that B is an isometry of EN that fixes the origin. The polarization identity:

2x · y = ||x||2 + ||y||2 − ||x− y||2

= d(x,0)2 + d(y,0)2 − d(x,y)2

shows that
Bx ·By = x · y

for any vectors x,y ∈ RN . This shows that B preserves the inner product. We need to show that it is
linear.

Let (en) be the standard orthonormal basis for RN . Because B preserves the inner product, (Ben)
is another orthonormal basis. For any vector x we have

x =
∑

(x · en)en .

Also,
Bx =

∑
(Bx ·Ben)Ben

=
∑

(x · en)Ben

because B preserves the inner product. Hence

B :
∑

xnen 7→
∑

xnBen

and so B is a linear map.

Consequently, B is an orthogonal linear map. �

Now let A be any isometry of Euclidean space. The translation T by the vector A0 is an isometry
so B = T−1 ◦A will be an isometry that fixes the origin. Hence we obtain:

Proposition 2.2 Euclidean isometries are affine
If A : EN → EN is an isometry of the Euclidean space EN , then there is a vector v ∈ RN and an
orthogonal matrix B with

A(x) = Bx + v for x ∈ RN .

Conversely, this map is an isometry for any vector v and any orthogonal matrix B.

Proof:
Let A be an isometry of EN and set v = A0. Then the translation T by v is an isometry and

B = T−1 ◦A : x 7→ Ax−A0

is an isometry that fixes the origin. Hence Lemma 2.1 shows that B is an orthogonal linear map with
Ax = Bx + v.

Conversely, suppose that B ∈ O(N), v ∈ RN and Ax = Bx + v. Then A is the composition of the
isometries B and translation by v, so it is also an isometry. �

Lecture 2 8



2.2 Isometries of the Euclidean Plane

We can use the previous results to describe all of the isometries of the Euclidean plane: E2. First
suppose that B is an isometry that fixes the origin. Then

B =
(

a b
c d

)
∈ O(2) .

This means that the columns of B are unit vectors orthogonal to one another. Hence we can choose an
angle θ ∈ [0, 2π) with (

a
c

)
=
(

cos θ
sin θ

)
.

The vector
(

b
d

)
must be a unit vector orthogonal to

(
a
c

)
, so there are just two possibilities:(

b
d

)
=
(
− sin θ
cos θ

)
or

(
sin θ
− cos θ

)
.

The first case gives a rotation about the origin through an angle θ (or the identity when θ = 0). The
second gives reflection in the line {(x, y) : y = (tan 1

2θ)x} at an angle 1
2θ from the x-axis.

Note that the determinant of the orthogonal matrix B must be either +1 or −1. It is +1 for the
identity or rotations that preserve the orientation of the plane and −1 for reflections that reverse the
orientation.

If we conjugate B by a translation T : x 7→ x + p, then we obtain another isometry T ◦ B ◦ T−1.
This first translates p back to the origin, then applies B, and then translates the origin back to p. When
B is a rotation through an angle θ, then T ◦ B ◦ T−1 is a rotation about T0 = p through an angle θ.
When B is a reflection in a line `, then T ◦B ◦ T−1 is reflection in the line T (`).

Now consider an isometry A of the Euclidean plane that does not fix the origin. Proposition 2.2
shows that Ax = Bx + v for some B ∈ O(2) and some vector v ∈ R2. When B is the identity, then A
is a translation. When B is a rotation, we can always choose a vector p with (I −B)p = v. This means
that

T ◦B ◦ T−1(x) = Bx + (I −B)p = Bx + v

so the isometry A is a rotation about the point p. When B is a reflection in a line ` through the origin,
then we can split the vector v into a part v1 perpendicular to ` and a part v2 parallel to `. The linear
map I − B maps onto the vector subspace of vectors perpendicular to `, so we can choose a vector p
with (I −B)p = v1. This means that

T ◦B ◦ T−1(x) = Bx + (I −B)p = Bx + v1

so Ax = T ◦B ◦ T−1(x) + v2. When v2 = 0, this shows that A is reflection in the line ` translated by
p. However, when v2 6= 0, then A is a glide reflection, that is reflection in the line ` translated by p
followed by a translation parallel to `.

Proposition 2.3 Isometries of E2

An orientation preserving isometry of the Euclidean plane E2 is:

(a) The identity.

(b) A translation.

(c) A rotation about some point c ∈ E2.

An orientation reversing isometry of E2 is:

(d) A reflection.

(e) A glide reflections, that is a reflection in a line ` followed by a translation parallel to `.
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�

A similar, but slightly more involved, argument gives the corresponding result for Euclidean space
E3.

Proposition 2.4 Isometries of E3

An orientation preserving isometry of Euclidean 3-space E3 is:

(a) The identity.

(b) A translation.

(c) A rotation about some line `.

(d) A screw rotation, that is a rotation about some line ` followed by a translation parallel to `.

An orientation reversing isometry of E3 is:

(e) A reflection in some plane Π.

(f) A glide reflection, that is a reflection in a plane Π followed by a translation parallel to Π.

(g) A rotatory reflection, that is a rotation about some axis ` followed by reflection in a plane perpen-
dicular to `.

�
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3 THE ISOMETRY GROUP OF EUCLIDEAN SPACE

3.1 Quotients of the Isometry group

Recall from Proposition 2.2 that every isometry A of EN can be written as

A : x 7→ Bx + v

with B ∈ O(N) and v ∈ RN . Hence we can define a map

φ : Isom(EN ) → O(N) by A 7→ B .

Proposition 3.1
The map φ : Isom(EN ) → O(N) given above is a group homomorphism with kernel equal to the group
Trans(EN ) of all translations of EN .

Proof:
Let A1, A2 be two isometries with Akx = Bkx + vk. Then

A2 ◦A1(x) = A2(B1x + v1) = B2(B1x + v1) + v2 = (B2B1)x + (B2v1 + v2) .

Hence,
φ(A2 ◦A1) = B2B1 = φ(A2)φ(A1)

which shows that φ is a group homomorphism.

The isometry A : x 7→ Bx + v is in the kernel of φ when φ(A) = B = I. This means that A is a
translation. �

The group Trans(EN ) of translations is a normal subgroup of the isometry group, since it is the
kernel of the homomorphism φ. This means that an isometry A acts on the translations by conjugation.
If A : x 7→ Bx + v and T is the translation T : x 7→ x + t, then

A ◦ T ◦A−1(x) = x + Bt .

This action will be very important to us later when we look at crystallographic groups.

There is another important homomorphism from Isom(EN ) that tells us whether an isometry pre-
serves or reverses orientation. When A : x 7→ Bx + v, we define ε(A) to be detB. Then

ε : Isom(EN ) → {−1,+1}

is a group homomorphism. The kernel of ε is the group Isom+(EN ) of orientation preserving isometries
of EN . This is a normal subgroup of Isom(EN ).

Recall that, for any surjective group homomorphism α : G → H, the inverse images α−1(h) are the
cosets of ker α in G. The number of cosets is equal to the number of elements in H and is called the index
of ker α in G. Since ε : Isom(EN ) → {−1,+1} is a group homomorphism onto {−1,+1}, the subgroup
Isom+(EN ) has index 2 in Isom(EN ). This means that it has just two cosets Isom+(EN ) = ε−1(+1) and
the complement Isom−(EN ) = ε−1(−1). For any orientation reversing isometry J , this complement is
equal to the coset JIsom+(EN ).

If G is any subgroup of Isom(EN ), then the restriction

ε|G : G → {−1,+1}

is a group homomorphism. Let G+ = G ∩ Isom+(EN ) be the orientation preserving isometries in
G. These form the normal subgroup ker ε|G of G. The image of ε|G is either {+1} or {−1,+1}.
Consequently, either G = G+ contains only orientation preserving isometries or else G+ is of index 2 in
G. When we study subgroups like G we often begin by looking at G+ and then consider how we can
add orientation reversing isometries.
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3.2 Matrices for Isometries

The Euclidean space EN is the same set as RN but it has different properties. In the vector space
RN the origin 0 is a special point. However, in Euclidean space it is not since translations can be used
to send 0 to any other point. Rather than thinking of EN as equal to RN , it is often more convenient
to identify it with a hyperplane in RN+1 that does not go through the origin. Then we can represent
every isometry as an (N + 1)× (N + 1) matrix.

Set EN to be the hyperplane {y = (yn)N+1
n=1 ∈ RN+1 : yN+1 = 1}in RN+1. Any vector x ∈ RN then

corresponds to a point
(

x
1

)
∈ EN . The Euclidean metric on EN is just the restriction of the usual

metric on RN+1:
d(y,z) = ||y − z|| .

Let A be an isometry of EN . Then Proposition 2.2 shows that A maps a vector x ∈ RN to the
vector Bx+v for some B ∈ O(N) and v ∈ RN . When we think of EN as the hyperplane {y : yN+1 = 1}
we see that A sends the vector(

x
1

)
to

(
B v
0 1

)(
x
1

)
=
(

Bx + v
1

)
.

So A is represented by the (N + 1)× (N + 1) matrix(
B v
0 1

)
.

Exercise:

4. Show that an (N + 1) × (N + 1) matrix maps the hyperplane EN isometrically onto itself if and
only if

M =
(

B v
0 1

)
for some matrix B ∈ O(N) and some vector v ∈ RN .

This means that we can regard the group Isom(EN ) as a group of matrices. This can make compu-
tations simpler and it also gives us a natural metric on the group. For the (N + 1)× (N + 1) matrices
are a vector space of dimension (N + 1)2 and have a inner product given by

K ·M = tr KtM =
N+1∑
i=1

N+1∑
j=1

kijmij .

We can then define the distance between two matrices K and M as

d(K, M)2 = (K −M) · (K −M) =
∑
i,j

(kij −mij)2 .

This metric behaves as you would expect. A sequence (M(k)) of matrices converges to a limit matrix
M if and only if the sequence (M(k)ij) of ij entries converges to Mij for each pair ij.
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3.3 Finite Groups of Isometries of the Plane

In Proposition 2.2 we showed that each isometry A of EN is of the form x 7→ Bx + v with
B ∈ O(N), v ∈ RN . This means that A is affine, so

A
(∑

λjxj

)
=
∑

λjA(xj) provided that
∑

λj = 1 .

Let G be a finite subgroup of Isom(EN ). Choose any point a ∈ EN . The centroid of the orbit of a:

c =
1
|G|

∑
T∈G

T (a)

then satisfies A(c) = c for each A ∈ G. Therefore all of the elements of G fix the point c.

Proposition 3.2 Finite subgroups of Isom(E2).
A finite subgroup G of Isom(E2) is either a cyclic group consisting of N rotations through angles 2πk/N
(k = 0, 1, 2, . . . , N − 1) about some point c, or else a dihedral group consisting of N rotations through
angles 2πk/N (k = 0, 1, 2, . . . , N − 1) about some point c and N reflections in lines through c.

Proof:
The centroid c is fixed by all of the isometries in G.

The subgroup G+ = G∩ Isom+(E2) is also a finite group, with order N say. Then each transforma-
tion A ∈ G+ is a rotation about c with AN = I. Hence A must be a rotation through an angle 2πk/N
for some integer k ∈ {0, 1, 2, . . . , N − 1}. There are only N such rotations about c so all of them must
lie in G+. Hence G+ must be the cyclic group of order N generated by a rotation R about c through
an angle 2π/N .

If G consists only of orientation preserving isometries, then G = G+ is cyclic. Otherwise, there
must be an orientation reversing isometry M in G \G+. This fixes c so it must be a reflection in a line
` through c. The homomorphism ε : G → {−1,+1} maps G+ onto +1 and the coset G+M onto −1, so
|G| = 2N .

The products M,RM,R2M, . . . , RN−1M are all distinct and are reflections in the line obtained by
rotating ` about c through angles πk/N for k = 0, 1, 2, . . . , N − 1 respectively. So we see that G is
dihedral of order 2N . �

The groups described in this proposition are the symmetries of a regular N -gon centred on c, either
the orientation preserving isometries for the cyclic group or all the isometries for the dihedral group.
This is illustrated in the picture below. The orientation preserving isometries permute the shaded
regions while the orientation reversing isometries interchange the shaded and unshaded regions.
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Regular polygon of order N = 7.

3.4 Compositions of Reflections

We wish to find the result of composing two reflections. The simplest way to do this is to choose
co-ordinates so that one of the reflections is, say, reflection in the x-axis and then simply use matrices.
You should do this. We will adopt a different approach.

Let M be the reflection of E2 in the line `. Let T be a translation perpendicular to `. Then the
conjugate MTM−1 is translation in the reverse direction, that is T−1. So MTM−1 = T−1 and hence
MT = T−1M . Similarly, if R is a rotation about a point on `, then the conjugate MRM−1 is rotation
about the same point in the opposite direction, so MRM−1 = R−1.

Now suppose that M ′ is reflection in a second line `′. If the two lines ` and `′ are parallel, then
we can find a translation T perpendicular to both line that maps ` onto `′. Hence M ′ = TMT−1.
Consequently

M ′M = TMT−1M = TMMT = T 2 .

So the composition of two reflections in parallel lines is a translation perpendicular to those lines by
twice the distance between them.

If the two lines ` and `′ meet at a point P , then there is a rotation R about P that maps ` onto `′.
Hence M ′ = RMR−1. Consequently

M ′M = RMR−1M = RMMR = R2 .

So the composition of the two reflections is a rotation about the point P of intersection through twice
the angle from ` to `′
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4 FINITE SYMMETRY GROUPS OF EUCLIDEAN SPACE

If P is an object in E3, then the isometries of E3 that are symmetries of P form a subgroup. By
choosing P to be highly symmetric, such as one of the Platonic solids, we obtain a non-trivial, finite
group of symmetries. The aim of this lecture is to prove that these give us all of the finite subgroups of
Isom(E3). We will begin by looking only at the orientation preserving symmetries.

Recall from §3 that every finite subgroup G of Isom(EN ) must fix a point c ∈ EN . By translating,
we can ensure that this point c is at the origin. Then each symmetry A ∈ G must be in O(N). This
means that A maps the unit sphere SN−1 = {x ∈ RN : ||x|| = 1} to itself isometrically. Hence we can
equally well look at the finite subgroups of Isom(SN ).

The only orientation preserving symmetries of E3 that fix the origin are the identity and rotations
about an axis through the origin. Hence we need only consider which rotations are symmetries.

4.1 Examples of Finite Symmetry Groups

We begin by giving examples of objects with finite symmetry groups. It is usually easy to see what
the symmetries are and to verify that we have them all by using the orbit – stabilizer theorem.

Let v be a unit vector in R3 and R the rotation about this vector through an angle 2π/N for some
N = 2, 3, 4, . . .. Let u be a unit vector orthogonal to v. Then the points u, Ru, R2u, . . . , RN−1u are
the vertices of a regular N -gon P . By joining each vertex of P to 2v we get the cone on P . By joining
each vertex of P to both 2v and −2v we get the double cone on P .

0

2v

u

Ru

R
2
u

R
N−1

u

0

2v

−2v

u

Ru

R
2
u

R
N−1

u

Regular cone Regular double cone

It is clear that each of maps I,R,R2, . . . , RN−1 is a symmetry of the cone or double cone on P . For
the single cone, these are the only orientation preserving symmetries. For the group of symmetries acts
on the vertices of the polygon P with the orbit of u being all N vertices and the stabilizer of u being
only the identity. So the orbit – stabilizer theorem shows that the orientation preserving symmetry
group of the cone on P has N elements and so is the cyclic group {I, R,R2, . . . , RN−1} ∼= CN .

For the double cone on P , there are other symmetries. The rotation S about u through an angle
π is one and SR, SR2, . . . , SRN−1 are the others. Each of these is a rotation through an angle π. Once
again, the orbit – stabilizer theorem shows that this is all of the orientation preserving symmetries.
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They form a group isomorphic to the dihedral group D2N . (Note that we usually think of the dihedral
group as the plane symmetries of P . Then it has N reflections. The rotations through angle π act of
the plane of P in the same way as the reflections but interchange the half-spaces above and below P .)

There are also orientation reversing symmetries. For the cone, there are N reflections in planes
through v. So the full symmetry group is isomorphic to D2N . For the double cone, the reflection J in
the plane of the polygon P is one symmetry. The others are JR, JR2, . . . , JRN−1, which are rotatory
reflections, and JS, JSR, . . . , JSRN−1, which are reflections in planes through v. Since J commutes
with all the other symmetries, we see that the full symmetry group is isomorphic to D2N × C2.

We can do a similar analysis when P is one of the Platonic solids. Recall that the Platonic solids
are the regular tetrahedron, octahedron, cube, dodecahedron and icosahedron. Let G be the group
of symmetries of one of these, say P , centred on the origin. Then G+ is the subgroup of orientation
preserving symmetries. These groups act on the vertices. The regularity of the Platonic solids shows
that there are symmetries that move any vertex to any other, so there is one orbit consisting of all the
vertices. The stabilizer in G+ consists of all the rotations that fix that vertex. These must permute the
faces that meet at the vertex, so the stabilizer in G+ is cyclic with order equal to the number of faces
meeting at each vertex. The various numbers are:

Orbit Stabilizer |G+|
(vertices) (faces at each vertex)

Tetrahedron 4 3 12

Cube 8 3 24
Octahedron 6 4 24

Dodecahedron 20 3 60
Icosahedron 12 5 60

These give finite groups of orientation preserving symmetries. (We will see later that the groups are
not all distinct. A Platonic solid and its dual have the same symmetries, so the groups for the cube and
octahedron are the same, as are the groups for the dodecahedron and the icosahedron.) If we include
the orientation reversing symmetries we obtain finite groups with twice as many elements.

We have not shown that these finite symmetry groups really exist. To do so, we would need to
show that the Platonic solids exist and their symmetry groups act as claimed on the vertices. This was
done in the Geometry course and various approaches to it are outlined in the example sheets.

4.2 Finite Subgroups of Isom(E3).

Now we aim to prove that the finite groups described in the previous section are the only ones that
exist. We will concentrate on the groups of orientation preserving symmetries. The groups are then
cyclic of order N for N = 1, 2, 3, . . .; dihedral of order 2N ; and the rotational symmetry groups of the
Platonic solids, called the tetrahedral, octahedral and icosahedral groups.

Theorem 4.1 Finite symmetry groups in Isom+(E3)
Let G be a finite subgroup of Isom+(E3) consisting of orientation preserving isometries. Then G is the
orientation preserving symmetry group of one of the following:

(a) A cone on a regular plane polygon.
(b) A double cone on a regular plane polygon.
(c) A regular tetrahedron.
(d) A regular octahedron.
(e) A regular icosahedron.
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Proof:
First translate so that G fixes the origin. Then each non-identity element of G is a rotation

about an axis through 0. Let Ω be the set of unit vectors that are fixed by by some non-identity element
of G. Then Ω is a finite set and G acts on it. Let Ω1,Ω2, . . . ,ΩJ be the different orbits in Ω. The orbit
– stabilizer theorem shows that each vector u ∈ Ωj has a stabilizer of order Sj = |G|/|Ωj |.

Now we count the number of pairs in the set

X = {(A,u) : A ∈ G \ {I}, u ∈ S2 and Au = u} .

Each A ∈ G \ {I} is a rotation and so fixes exactly two unit vectors. Therefore |X| = 2(|G| − 1).
Alternatively, each u ∈ Ω gives rise to |Stab(u)| − 1 pairs in X. So

|X| =
J∑
j=1

(Sj − 1)|Ωj | =
J∑
j=1

|G| − |Ωj | .

Dividing by |G| we see that

2− 2
|G|

=
J∑
j=1

1− 1
Sj

. ∗

Each stabilizer of u ∈ Ω has order at least 2, so

1− 1
Sj

>
1
2

.

Hence,

2 > 2− 2
|G|

=
J∑
j=1

1− 1
Sj

> 1
2J

and so J is 1, 2 or 3.

Order the orbits so that S1 > S2 > S3 > 2. Clearly there are no solutions to (∗) with J = 1. If
J = 2 then (∗) gives

2− 2
|G|

= 2− 1
S1

− 1
S2

6 2− 2
S1

so S1 > |G|. This implies that S1 = |G| and |Ω1| = 1. Hence,

2− 2
|G|

= 2− 1
S1

− 1
S2

= 2− 1
|G|

− 1
S2

and so S2 = |G| and |Ω2| = 1. Hence Ω consists of two unit vectors v and −v which are fixed by each
isometry in G. The group G is then a finite isometry group of the plane orthogonal to v so it is cyclic
by Proposition 3.2 . This shows that G is the symmetry group of a cone as in (a).

When J = 3, equation (∗) gives

1
S1

+
1
S2

+
1
S3

= 1 +
2
|G|

.

This implies that
3
S3

> 1 +
2
|G|

> 1

so S3 = 2.

Equation (∗) now yields
2
S2

>
1
S1

+
1
S2

=
1
2

+
2
|G|

>
1
2
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which implies that S2 = 2 or 3.

When S2 = 2 we have
1
S1

=
2
|G|

which gives S1 = N,S2 = 2, S3 = 2 and |G| = 2N . The orbit Ω1 has has just two points. Let v be
one of them. The stabilizer Stab(v) is a finite group of N rotations about v, so it is cyclic generated
by a rotation R. Choose u as one of the points in Ω3. Then the others are Ru, R2u, . . . , RN−1u. The
stabilizer of u has order 2, so it contains a rotation S of order 2. This maps v to −v. It is now apparent
that each element of G is a symmetry of a double cone as in (b).

When S2 = 3 we have
1
S1

=
2
|G|

+
1
6

>
1
6

so S1 = 3, 4 or 5. The possibilities are:

S1 |Ω1| S2 |Ω2| S3 |Ω3| |G|
3 4 3 4 2 6 12
4 6 3 8 2 12 24
5 12 3 20 2 30 60

We need to show that these correspond to the symmetry groups of the tetrahedron, octahedron and
icosahedron respectively.

We will consider the middle case as an example. Here Ω1 has 6 points. The stabiliser of each is a
cyclic group of order S1 = 4. Choose one point v ∈ Ω1. The stabiliser of v is a cyclic group of order
4; let R be a generator. Now −v is also fixed by R and has the same stabiliser. So it must be in Ω1.
There remain 4 other points in Ω1 and these must be w, Rw, R2w, R3w all lying in the plane through
0 orthogonal to v. Hence the points of Ω1 are the 6 vertices of a regular octahedron.

Note that the points of Ω2 are the midpoints of the faces of this octahedron and the points of Ω3

are the midpoints of the edges. The points of Ω2 are the vertices of a cube. This is the dual of the
octahedron. The polyhedron and its dual have the same symmetry group.

Ω1 Ω2 Ω3

In a similar way, the first row in the table above gives us a regular tetrahedron. Ω1 is the set of
vertices; Ω2 the centres of the faces; Ω3 the midpoints of edges. The tetrahedron is dual to another
tetrahedron.

The final row gives a icosahedron. Ω1 is the set of vertices; Ω2 the centres of the faces; Ω3 the
midpoints of edges. The dual is a dodecahedron. �
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5 THE PLATONIC SOLIDS

5.1 History

The Platonic solids have been known and studied for a very long time. Stones carved into polyhedral
shapes date from about 2000BC in Scotland.
(See http://www.georgehart.com/virtual-polyhedra/neolithic.html.)

The Pythagoreans were aware of at least some of the solids and endowed them with a mystical
significance. Theaetetus (c. 417BC - 369BC) was the first to prove that there were only five convex
regular polyhedra. Plato refers to the solids in the Timaeus c. 360BC and follows the Pythagoreans in
giving them mystical significance. Four of them represented the four elements: the tetrahedron for fire,
the cube for earth, the octahedron for air and the icosahedron for water. This association was justified
on the grounds that the icosahedron is the smoothest of the polyhedra while the tetrahedron is the
sharpest. The dodecahedron represented the entire universe with the twelve faces showing the twelve
signs of the zodiac. Euclid devoted the 13th and last book of his Elements to the Platonic solids.

In the 18th Century Kepler pursued Plato’s mystical interest but also tried to use the Platonic
solids to describe the known universe. In the Mysterium Cosmographicum (1596) he suggested that the
radii of the orbits of the five known planets could be found by inscribing the solids one inside another.
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5.2 Regularity

The Platonic solids are the only regular, convex polyhedra. We need to consider what regularity
means. For a polygon, regularity means that each edge looks the same and each vertex looks the same.
This means that there are symmetries of the polygon that map each edge to any other and each vertex
to any other. Note that there are non-convex polygons that also have this property. For example:

We will consider polyhedra that have a finite number of vertices, edges and faces. For the polyhedron
to be regular we want to there to be symmetries that map any vertex, edge or face to any other. A flag
for the polyhedron P is a triple (v, e, F ) consisting of a vertex v, an edge e and a face F such that v is
one end of e, and e is one of the boundary edges of F . We will say that the polyhedron is regular if, for
any two flags (v, e, F ) and (v′, e′, F ′) there is a symmetry of P that maps one flag to the other.

This condition certainly implies that the group of symmetries of P acts on the set V of vertices
and V is a single orbit. Once we know where a symmetry sends each vertex, we can determine where
each edge and face goes and hence find the symmetry completely. This means that the symmetry group
G of P is a finite group of isometries. Hence it is one of the groups found in §4 . Furthermore, the
group G will contain symmetries that fix a vertex v and maps any one edge at v to any other. Hence,
each vertex has a non-trivial stabilizer. This means that the vertices of P must be one of the orbits
Ω1,Ω2,Ω3 found in the proof of Theorem 4.1 . Indeed, if we are not in the trivial situation where only
two edges meet at each vertex, then the vertices can not be Ω3 which has stabilizers of order 2. Hence
the set of vertices is one of the orbits we considered in §4 .

It is not, however, necessary that we join up the vertices in the expected way. See, for example, the
non-convex regular polygon above. Similar possibilities arise for polyhedra. For example, consider the
vertices of a cube with side length 1. We can join each vertex to the 3 other vertices at a distance

√
2

rather than those at unit distance. This gives two tetrahedra which together form a non-convex regular
polyhedron.

Note that the intersection of these two tetrahedra is the octahedron dual to the original cube.
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5.3 Convex Regular Polyhedra

Suppose that P is a convex polyhedron that is regular. The regularity certainly implies that each
face is a regular polygon and an equal number of these faces meet at each vertex. Say the faces are
p-gons and q meet at each vertex. Here p and q are at least 3. The pair {p, q} is called the Schläfi
symbol for the polyhedron.

Choose one vertex v. The q vertices adjacent to v are the vertices of a regular q-gon. The angle
between two edges that meet at a vertex is π − 2π/p. At each vertex q of these meet, so

q

(
π − 2π

p

)
< 2π .

This simplifies to
(p− 2)(q − 2) < 4

so the only possible solutions are {3, 3}, {3, 4}, {4, 3}, {3, 5}, {5, 3}. These give the five Platonic solids.

5.4 The Symmetry Groups

In Theorem 4.1 showed which groups could arise as the finite subgroups of Isom(E3). However,
we have not identified which groups these are. By using some of the non-convex polyhedra with these
symmetry groups, we can easily do so.

Consider first the tetrahedral group Sym(T ). This permutes the four vertices of a tetrahedron T ,
and so we obtain a group homomorphism θ : Sym(T ) → S4 into the symmetric group S4 on the vertices.
If a symmetry fixes all four vertices, then it is the identity. Hence θ is injective. We already know,
from the orbit – stabilizer theorem, that Sym(T ) has 24 elements, so θ must be an isomorphism. Thus
the full symmetry group of the regular tetrahedron is isomorphic to S4. By looking at the individual
symmetries we see that the orientation preserving symmetries correspond to the even permutations of
the vertices. So the group Sym+(T ) is isomorphic to the alternating group A4.

Now consider the symmetry group of a cube centred on the origin. This is the same as the symmetry
group of the dual octahedron which has vertices at the centres of each face of the cube. There are two
tetrahedra embedded in this cube with vertices at the vertices of the cube, denote these by T+ and
T−. The isometry Jx 7→ −x interchanges T+ and T−. It also commutes with every other symmetry of
the cube. A symmetry S of the cube either maps each tetrahedron onto itself or else interchanges the
tetrahedra. In the latter case, J ◦S is another symmetry that maps each tetrahedron onto itself. Hence
we see that the homomorphism

θ : Sym(C) → Sym(T+)× {1,−1} ; S 7→
{

(S, 1) when S(T+) = T+;
(J ◦ S,−1) when S(T+) = T−.

is injective. Counting elements shows that the full symmetry group Sym(C) is isomorphic to S4 × C2.
The subgroup Sym+(C) is isomorphic to S4. (We can also prove this by considering how a symmetry
of the cube acts on the four long diagonals joining a vertex of V to its antipodal vertex.)

Finally, consider the symmetry group of the dodecahedron D, or the dual icosahedron. There are
five cubes embedded inside the dodecahedron (or equivalently five octahedra within which an icosahedron
is embedded). A symmetry of the dodecahedron permutes these 5 embedded cubes, so we get a group
homomorphism θ : Sym(D) → S5 into the symmetric group on the cubes. By looking at each rotational
symmetry of the dodecahedron we can check that θ actually maps into the alternating group A5. Suppose
that the symmetry T is in the kernel of this homomorphism. Then T maps each cube to itself. A vertex
v of the dodecahedron is a vertex of exactly two of the cubes and these two cubes have only the vertices
v and J(v) = −v in common. Hence, T must map each vertex either to itself or to the antipodal vertex
J(v). Since T is an isometry, we must have T = I or T = J . This shows that the map

Sym(D) → A5 × C2 ; T 7→ (θ(T ), ε(T ))

is an injective group homomorphism. The orbit – stabilizer theorem shows that there are an equal
number 120 of elements in Sym(D) as in A5×C2, so this is an isomorphism. The orientation preserving
symmetries of the dodecahedron form a group isomorphic to A5.
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Five cubes embedded in a regular dodecahedron

5.5 Fundamental sets

The symmetry group G of a Platonic solid P acts on the faces of P so we can look for a fundamental
set. Since G permutes the faces, we can restrict our attention to one face F and look for a fundamental
set of Stab(F ). This stabilizer is the symmetry group of the polygonal face. It is easy to see that a
fundamental set for this dihedral group is a closed triangle as shown in the diagram below.

The corners of this triangle are a vertex of P , the midpoint of an edge of P and the centre of the
face F . The triangle thus corresponds to a flag for P . For each flag we obtain a copy of the fundamental
triangle and these tessellate the surface of the polyhedron.

We can also look for a fundamental set for the symmetry group acting on all of E3. For this, we
can take the cone on the triangle found above with its vertex at the centroid of P .
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6 LATTICES

Let M be a metric space with metric d. A point x ∈ M is isolated if there is some neighbourhood
V of x that contains no point of M except x. This means that there is a δ > 0 with

d(x, y) > δ for all y ∈ M \ {x} .

For example, each point of Z is isolated. The metric space M is discrete if each point of M is isolated.
Note that the particular metric on M is not important only the topology.

Let G be a matrix group. Then G has a natural (Euclidean) metric. We say that G is a discrete
group if it is discrete for this metric. If the identity I is isolated in G, then every other point T ∈ G is
also isolated. For the multiplication

G → G ; A 7→ TA

is continuous and has a continuous inverse A 7→ T−1A. Hence, to check that a group is discrete we need
only check that I is isolated.

Exercise:

-5. Show that G is a discrete matrix group if and only if there is no sequence of non-identity elements
elements gn ∈ G that converge to the identity.

For example, the group SL(2, Z) of 2× 2 matrices M =
(

a b
c d

)
with a, b, c, d ∈ Z and ad− bc = 1

is discrete, because any matrix M 6= I satisfies

d(M, I)2 = (a− 1)2 + b2 + c2 + (d− 1)2 > 1 .

Every finite group is certainly discrete. Discrete groups can be infinite but they can not be too
large.

First we will look at the discrete groups of translations. These groups correspond to additive
subgroups of RN . Let G be a subgroup of Trans(EN ), then the set

Λ = {T (0) : T ∈ G}

is an additive subgroup of RN . Conversely, if Λ is any additive subgroup of RN , then

G = {x 7→ x + v : v ∈ Λ}

is a subgroup of Trans(EN ). Note that d(T1, T2) = ||v1 − v2||, so G is a discrete group if and only if Λ
is a discrete subset of RN . We call a discrete additive subgroup of RN a lattice in RN .

For example, the set Zw1 for any non-zero vector w1 is a lattice in R2. Similarly, Zw1 + Zw2 is
a lattice in R2 for any two linearly independent vectors w1,w2. We will show that these are the only
lattices in R2.

Proposition 6.1 Lattices in R
Each lattice in R is of the form Zw for some w ∈ R.
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Proof:
Since Λ is discrete, there is a δ > 0 with |λ− 0| > δ for each λ ∈ Λ \ {0}. Hence, |λ1 − λ2| > δ

for each pair of distinct points λ1, λ2 ∈ Λ. Consequently, there can be no more than a finite number of
points of Λ in any ball B(0, r). This implies that either Λ = {0} or else there is a point a ∈ Λ \ {0}
closest to 0.

In the first case we have Λ = Zw for w = 0. In the second case we will see that Λ = Za. We
certainly have a ∈ Λ, so Za ⊂ Λ. Suppose that b ∈ Λ. Then b is a scalar multiple of a, say b = ta with
t ∈ R. Now t = k + t′ with k ∈ Z and 0 6 t′ < 1. So b′ = b− ka is also in Λ and has

|b′| = t′|a| < |a| .

The choice of a tells us that b′ must be 0, so b = ka ∈ Za as required. �

We can extend the argument used above to find the lattices in R2 and, indeed, in RN for any N .

Proposition 6.2 Lattices in R2

Each lattice in R2 is either {0}, or Zw1, or Zw1 + Zw2 for a pair of linearly independent vectors
w1,w2 ∈ R2.

Proof:
Let Λ be a lattice in R2 with Λ 6= {0}. As in the previous proposition, we can find a δ > 0

with d(λ1, λ2) > δ for each pair of distinct points λ1, λ2 ∈ Λ. Hence, only a finite number of points of Λ
can lie within a ball B(0, r). Choose a vector w1 ∈ Λ \ {0} with d(w1, 0) minimal. The argument used
in the proof of the previous proposition shows that a scalar multiple tw1 is in Λ if and only if t ∈ Z.

If there are no elements of Λ\Zw1, then we are finished. Otherwise, there are vectors v ∈ Λ\Zw1.
Each such vector can be written as

v = v⊥ + tw1 with v⊥ orthogonal to w1 and t ∈ R .

Observe that
d(v, Rw1) = ||v⊥|| and d(v,0) =

√
||v⊥||2 + t2||w1||2 .

Since only a finite number of points of Λ lie within any ball about the origin, we can choose a vector
v ∈ Λ \ Zw1 with ||v⊥|| = d(v, Rw1) minimal. Call this vector w2.

The vectors w1,w2 are certainly linearly independent, so any vector v ∈ Λ can be written as a
linear combination v = t1w1 + t2w2. The real numbers tj can be written as tj = kj + t′j with kj ∈ Z
and 0 6 t′j < 1. Then

v′ = v − (k1w1 + k2w2) = t′1w1 + t′2w2 ∈ Λ

and has
d(v′, Rw1) = d(t′2w2, Rw1) = t′2d(w2, Rw1) < d(w2, Rw1) .

The choice of w2 ensures that v′ must be in Rw1 and in Λ. We showed above that such a vector must
be an integer multiple of w1, so v ∈ Zw1 + Zw2. �

We say that the lattice Λ has rank 0, 1 or 2 according as Λ = {0}, Zw1 or Zw1 + Zw2.

The vectors w1,w2 in this proposition are not unique. For an example, consider the hexagonal

lattice Z
(

1
0

)
+ Z

( 1
2

1
2

√
3

)
.

The proof also shows that the parallelogram

{t1w1 + t2w2 : 0 6 t1, t2 < 1}

is a fundamental set for the lattice Λ acting on E2. The quotient E2/Λ is obtained by identifying the
parallel sides of this parallelogram to give a torus.
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7 EUCLIDEAN CRYSTALLOGRAPHIC GROUPS

A (2-dimensional Euclidean) crystallographic group is a discrete subgroup of Isom(E2). Let G be
such a group. The homomorphism φ : Isom(E2) → O(2) defined in §3 has all the translations Trans(E2)
as its kernel. So, when we restrict it to G we get a group homomorphism

φ : G → O(2)

with kernel equal to G ∩ Trans(E2). This is a discrete group of translations, so gives a lattice Λ. We
call the rank of Λ the rank of the original crystallographic group G. The image φ(G) is called the point
group G of G. It is a subgroup of the orthogonal group O(2). We think of the group G as being made
by combining the lattice of translations with the point group.

Lemma 7.1 The point group acts on the lattice
Each isometry in the point group G of a discrete subgroup G of Isom(E2) maps the lattice of G onto
itself.

Proof:
Let A : x 7→ Bx + v be an isometry in G. Then φ(A) = B is in the point group G. If w is in

the lattice Λ for G, then the translation T : x 7→ x + w is in G. Hence, the composite:

A ◦ T ◦A−1 : x 7→ B(B−1(x− v) + w) + v = x + Bw

is in G. This shows that Bw ∈ Λ. �

We are now in a position to describe all of the 2-dimensional Euclidean crystallographic groups.
However, the entire program is rather tedious so we will only explain the main themes and illustrate
the results.

Let G be the crystallographic group, Λ its lattice, and G its point group.

7.1 Rank 0 : Finite Groups

If G is of rank 0, then Λ = {0}. This means that G can contain no translations and no glide
reflections (since the square of a glide reflection is a translation). Hence G contains only the identity,
rotations and reflections. Let us first consider the orientation preserving subgroup G+ of G. Suppose
that G contains two rotations R1, R2. Then their commutator R1R2R

−1
1 R−1

2 is a translation since
φ(R1R2R

−1
1 R−1

2 ) = φ(R1)φ(R2)φ(R1)−1φ(R2)−1 and SO(2) is commutative. Since this translation is
by a vector in the lattice Λ = {0}, it must be the identity and so R1 and R2 commute. This implies
that they are rotations about the same centre. Since G+ is a discrete group of rotations, it must be
a finite cyclic group. Since G+ is a normal subgroup of G with index 1 or 2, G must also be finite.
Proposition 3.2 shows that G must then be a cyclic or dihedral group.
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7.2 Rank 1: Frieze Patterns

If G is of rank 1, then Λ = Zw for some non-zero vector w ∈ R2. We will denote the translation
x → x + w by T . Each orthogonal map B in the point group G maps Λ onto itself. So B must be the
identity, a rotation R through angle π about the origin, a reflection M in the line Rw, or a reflection
N in the line through the origin orthogonal to w. These four maps form a group D4. Hence G must be
a subgroup of {I,R,M,N}. The possible subgroups are:

{I} {I,R} {I,M} {I,N} {I,R,M,N}
For each of these we can work out what the possibilities are for G.

(a) G = {I}.

Then G = Λ and consists entirely of translations and is cyclic of infinite order. This G is the
symmetry group of a pattern such as:

We call such patterns whose symmetry group is a rank 1 crystallographic group frieze patterns.

(b) G = {I,R}.

Then G must contain a rotation A with φ(A) = R. So A is a rotation about some centre c through
an angle π. Choose co-ordinates in the plane so that this point c is the origin. Then A = R. Note that
RTR−1 = T−1. Hence the group G consists of the translations T k and the rotations T kR for k ∈ Z.
The rotation T kR is through angle π with centre 1

2kw. The group G is an infinite dihedral group D∞.
Such a G is the symmetry group of a frieze pattern such as:

(c) G = {I, M}.

G must contain at least one isometry A with φ(A) = M . This means that A is either a reflection
in a line parallel to w or a glide reflection parallel to w. In either case, the other isometries of G that
φ maps to M are T kA. Choose co-ordinates so that the origin is on the mirror.

In the first case G contains the translations T k, the reflection A, and the glide reflections T kA.
Note that ATA = T , so G ∼= C∞ × C2.

In the second case, A2 is a translation, so A2 = T r for some r ∈ Z \ {0}. Then A is reflection
followed by translation parallel to the mirror by 1

2rw. If r is even, say r = 2k, then T−kA is a reflection
and we are in the previous case. If r = 2k + 1, then C = T−kA is reflection followed by translation by
1
2w. This generates the cyclic group G and gives the pattern:
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(d) G = {I,N}.

G must contain at least one isometry A with φ(A) = N . This means that A is either a reflection
in a line orthogonal to w or a glide reflection orthogonal to w. In the second case A2 would be a
translation orthogonal to w, which is impossible. So A is a reflection in a line ` orthogonal to w.
Choose co-ordinates so that the origin is on the mirror. Note that ATA = T−1 so the group G is an
infinite dihedral group.

(e) G = {I, R,M,N}.

As in (b) we can choose co-ordinates so that R ∈ G. There must be an isometry A ∈ G that maps
to M under φ. There are two cases, as in (b). If we can choose A to be a reflection in a line parallel to
w, then ATA−1 = T and ARA−1 = R so G ∼= D∞ × C2:

If we can choose A to be reflection followed by translation by 1
2w then A generates an infinite cyclic

group and RAR−1 = A−1, so G is an infinite dihedral group.

Exercise:

6. Find fundamental sets for each of the frieze groups.

7.3 Rank 2: Wallpaper patterns

If G is of rank 2, then Λ = Zw1 + Zw2 for two linearly independent vectors w1,w2 ∈ R2. Each
orthogonal map B in the point group G maps Λ onto itself. The rotation about the origin through an
angle π always maps Λ onto itself. For most lattices there are no other symmetries fixing the origin as
the following result shows.

Lemma 7.2 The crystallographic restriction
A rotation in the point group G of a crystallographic group G must be of order 2, 3, 4 or 6.

Proof:
Let w1 be an element of Λ \ {0} with ||w1|| = r minimal. Since Λ is discrete, the set S =

Λ ∩ {v : ||v|| = r} is finite and the point group G must map this isometrically to itself. This certainly
implies that any rotation R ∈ G is of finite order.

Choose R as the rotation in G through the smallest angle, say θ. The vector Rw1 −w1 is also in
Λ so it must have length at least ||w1|| unless it is 0. This means that θ > π/3. Consequently R has
order 2, 3, 4, 5 or 6.

Lecture 7 28



0 w1

Rw1

θ

Suppose that R had order 5. Then, w1 + R2w1 ∈ Λ would be at a distance less than r from the
origin, which is forbidden.

0 w1

Rw1

R2
w1

R2
w1 + w1

2π/5
2π/5

�

Corollary 7.3 Point groups
The point group of a 2-dimensional Euclidean crystallographic group is either cyclic C1, C2, C3, C4, C6

or dihedral D2, D4, D6, D8, D12.

Proof:
Take w1 as in the previous proof and let R ∈ G be the rotation through the smallest angle θ.

If θ = π/2, then w1 and w2 = Rw1 generate the lattice. This is the square lattice.

If θ = 2π/3 or θ = π/3, then w1 and w2 = Rw1 generate the lattice. This is the hexagonal lattice.

�
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Square lattice Hexagonal lattice

We can now proceed as in the previous part to find all the possible crystallographic groups with
rank 2. These are the wallpaper groups. There are 17 of them, as illustrated below.

http://www.clarku.edu/∼djoyce/wallpaper/
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8 MÖBIUS TRANSFORMATIONS

8.1 The Riemann Sphere

It is useful to add an extra element ∞ to the complex plane to form the extended complex plane
C ∪ {∞}. It seems that the point at infinity is very different from the other, finite points but Riemann
showed that this is not really the case. He did this by representing all of the points of the extended
complex plane by points of the unit sphere S2 in R3. This sphere is called the Riemann sphere.

Let P be the unit sphere

P = {(z, t) ∈ C× R : |z|2 + t2 = 1}

in the three dimensional real vector space C × R. The “North pole” of this sphere will be denoted by
N = (0, 1). Stereographic projection maps points of the complex plane to points of the Riemann sphere
P and vice versa. Let z ∈ C. Then the straight line through N and (z, 0) crosses the sphere at N
and another point (w, t) ∈ P. We write π(z) = (w, t) and define π(∞) = N . Then π gives us a map
π : C ∪ {∞} → P. This map is invertible, for if (t, w) is any point of P except N , then the straight line
through N and (w, t) will cross the plane {(z, s) : s = 0} at a single point (z, 0) with π(z) = (w, t).

It is easy to give a formula for stereographic projection. The points on the line from z ∈ C to N
are {s(z, 0) + (1 − s)(0, 1) : s ∈ R}. This line crosses the sphere P when s = 0, giving the North pole,
and when s = 2

1−|z|2 , giving

π(z) =
(

2z

1 + |z|2
,
−1 + |z|2

1 + |z|2

)
.

Note from the diagram below that the triangles4z0N , 40AN and40Aπ(z) are all similar. Pythagoras’
theorem shows that d(N, z) =

√
1 + |z|2. Hence,

d(N,A) = d(A, π(z)) =
1√

1 + |z|2
and d(N,π(z)) =

2√
1 + |z|2

.

0

N

C
z

π(z)

A

Now let us consider two points z1, z2 ∈ C. The chordal distance κ(z1, z2) is the Euclidean distance
between the stereographic projections π(z1) and π(z2). In the diagram below, we show the triangle with
vertices N , z1 and z2.

Lecture 8 31



N

z1

z2

π(z1)

π(z2)

We know that
d(N, zj) =

√
1 + |zj |2 and d(N,π(zj)) =

2√
1 + |zj |2

.

So the triangles 4Nz1z2 and 4Nπ(z2)π(z1) are similar with scale factor 2√
1+|z1|2

√
1+|z2|2

. Conse-

quently,

κ(z1, z2) = d(π(z1), π(z2)) =
2|z1 − z2|√

1 + |z1|2
√

1 + |z2|2
.

When one of the points, say z2, is ∞ then we interpret this as

κ(z1,∞) =
2√

1 + |z1|2
.

Exercise:

7. Prove the formula for the chordal distance between two points z1, z2 ∈ C ∪ {∞} algebraically by
using the formula for stereographic projection.

-8. Prove that the chordal metric is a metric on the Riemann sphere.
9. Two points z, z′ ∈ C ∪ {∞} are antipodal if their stereographic projections satisfy π(z′) = −π(z),

so they are at the opposite ends of a diameter of the Riemann sphere. Show that z, z′ are antipodal
if and only if

z′ = −1/z .

A similar argument to that used above to find the chordal metric shows that stereographic projection
is conformal: it preserves the angle between curves. For, in the diagram below, the straight line from N
to z crosses the tangent plane at π(z) and the complex plane C at the same angle θ. Hence projection
with centre N from the tangent plane to C preserves angles. Consequently, π also preserves the angle
between two curves that meet at z.
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0

N

C
z

π(z)

Tangent plane at z

θ

θ

It is convenient to define circles in C ∪ {∞} to mean both straight lines and circles. The following
result explains why this is so.

Proposition 8.1 Stereographic projection preserves circles.
A curve Γ in C ∪ {∞} is a circle or a straight line if, and only if, the stereographic projection π(Γ) is a
circle on the Riemann sphere.

Proof:
We can write any circle or straight line in C ∪ {∞} as

ao|z|2 + az + az + a∞ = 0 (1)

where a0, a∞ ∈ R and a ∈ C. The stereographic projection π(z) is

(w, t) =
(

2z

1 + |z|2
,
−1 + |z|2

1 + |z|2

)
.

So (1) is equivalent to
(a0 + a∞) + aw + aw + (a0 − a∞)t = 0 . (2)

This is the intersection with the Riemann sphere of a plane, so it is a circle on the sphere.

Note that the plane intersects the sphere if, and only if, |a|2 − a0a∞ > 0. This same condition
ensures that (1) does describe a circle or straight line rather than the empty set. �

8.2 Möbius Transformations

Let a, b, c, d be complex numbers with ad−bc 6= 0. Then we can define a map T : C∪{∞} → C∪{∞}
by

T : z 7→ az + b

cz + d
.

Note that T (∞) = a/c and T (−d/c) = ∞. These maps are called Möbius transformations and form a
group Möb under composition of maps. The map

φ : GL(2, C) → Möb ;
(

a b
c d

)
7→ T
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is a group homomorphism.

A matrix M =
(

a b
c d

)
is in the kernel of this homomorphism when

az + b

cz + d
= z for all z ∈ C ∪ {∞} .

This occurs if and only if a = d and b = c = 0, so
(

a b
c d

)
= λI for some scalar λ ∈ C \ {0}. This

shows that a Möbius transformation is unaltered when we multiply each of the coefficients a, b, c, d by a
non-zero scalar λ. Usually we choose the scalar λ so that the determinant ad− bc is 1. Then the matrix(

a b
c d

)
is in SL(2, C). Now

φ : SL(2, C) → Möb ;
(

a b
c d

)
7→ T

is a group homomorphism whose kernel consists of the two matrices I and −I. Consequently, the Möbius
group is the quotient SL(2, C)/{I,−I}. We denote this quotient by PSL(2, C) and call it the projective
special linear group.

Recall that Möbius transformations map circles to circles.

Proposition 8.2 Möbius transformations map circles to circles
A Möbius transformation maps any circle on the Riemann sphere to a circle on the Riemann sphere.

Proof:
Let Γ be the circle {z : p0|z|2 + pz + pz + p∞ = 0}. Let T be a Möbius transformation with

inverse
S : z 7→ az + b

cz + d
.

Then

T (Γ) = {z : S(z) ∈ Γ} =
{

z : p0|az + b|2 + p(az + b)(cz + d) + p(az + b)(cz + d) + p∞|cz + d|2 = 0
}

.

Expanding this gives an expression of the form:{
z : q0|z|2 + qz + qz + q∞ = 0

}
which is clearly another circle. �

Proposition 8.3
For any triples of distinct points in the Riemann sphere, (a0, a1, a∞) and (b0, b1, b∞) , there is a unique
Möbius transformation T with T (a0) = b0 , T (a1) = b1 and T (a∞) = b∞.

Proof:
The Möbius transformation

Sa : z 7→
(

a1 − a∞
a1 − a0

)(
z − a0

z − a∞

)
has Sa(a0) = 0, Sa(a1) = 1 and Sa(a∞) = ∞. Hence, T = S−1

b ◦ Sa has the required properties. If T ′

is another Möbius transformation with the same properties, then Sb ◦ T ′ ◦ S−1
a fixes 0, 1 and ∞ so it

must be the identity. �

It follows from this that we can find a Möbius transformation that maps any circle in P onto any
other circle. For we choose three points on the first and find a Möbius transformation that maps them
to three points on the second.

Exercise:
10. Let Γ1, Γ2 be two disjoint circles on the Riemann sphere. Show that there is a Möbius transforma-

tion that maps them to two circles in C centred on 0.
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Proposition 8.4 Isometries of the Riemann sphere.
A Möbius transformation is an isometry of the Riemann sphere (for the chordal metric) if, and only if,
it is represented by a matrix

M =
(

a b
c d

)
∈ SU(2) .

M ∈ SU(2) means that the matrix M preserves the complex inner product 〈·, ·〉 on C2 and has deter-
minant 1. This means that M∗M = I or, equivalently, that d = a, c = −b and |a|2 + |b|2 = 1.

Proof:
Let J : P → P be the map z 7→ −1/z that maps a point to the antipodal point. Then J(z)

is the unique point of P that is at a distance 2 from z. Hence any Möbius isometry T must satisfy

J ◦ T ◦ J = T . Let T be represented by the matrix M =
(

a b
c d

)
with detM = 1. We then have

J ◦ T ◦ J : z 7→ −dz + c

bz − a
.

This shows that J ◦ T ◦ J is itself a Möbius transformation represented by the matrix
(
−d c
b −a

)
.

Therefore, if T is an isometry, then the two matrices
(

a b
c d

)
and

(
−d c
b −a

)
both represent T .

This implies that (
−d c
b −a

)
= ±

(
a b
c d

)
.

The + sign requires that d = −a and c = b so 1 = ad− bc = −|a|2− |b|2, which is impossible. Hence we
must have the − sign and this shows that M is unitary.

Conversely, suppose that the Möbius transformation T is represented by the matrix M ∈ SU(2).

Each z ∈ P can be written as z = z1/z2 with z =
(

z1

z2

)
∈ C2. Similarly, write w = w1/w2 with

w =
(

w1

w2

)
. Write w∗ =

(
w∗1
w∗2

)
=
(
−w2

w1

)
, so that Jw = w∗1/w∗2 = −w2/w1. Then we have

κ(Jw, z) =
2|Jw − z|√

1 + |Jw|2
√

1 + |z|2
=

2| − w2z2 − w1z1|√
|w1|2 + |w2|2

√
|z1|2 + |z2|2

=
2|〈w,z〉|
||w|| ||z||

.

Since J ◦ T = T ◦ J and 〈Ma,Mb〉 = 〈a, b〉 we see that

κ(T (Jw), T (z)) = κ(J(Tw), T (z)) =
2|〈M(w),M(z)〉|
||M(w)|| ||M(z)||

=
2|〈w,z〉|
||w|| ||z||

= κ(Jw, z)

and so T is an isometry. �
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9 VISUALISING MÖBIUS TRANSFORMATIONS

9.1 Fixed Points

Let T be the Möbius transformation represented by the matrix M =
(

a b
c d

)
with ad − bc = 1.

The vector
(

z1

z2

)
is an eigenvector of M precisely when T (z1/z2) = z1/z2. This means that z1/z2 is

a fixed point of T . We know, from Linear Algebra, that the matrix M is conjugate to
(

λ 0
0 λ−1

)
for

some λ 6= 0, or to
(

1 1
0 1

)
. This gives corresponding results for the Möbius transformations. Let us

prove this directly using the transformations.

Theorem 9.1 Fixed points of Möbius transformations
A non-identity Möbius transformation has either 1 or 2 fixed points in P. If it has 1, then it is conjugate
in Möb to P : z 7→ z + 1. If it has 2, then it is conjugate in Möb to Mk : z 7→ kz for some k 6= 0, 1.

Proof:
Suppose that the Möbius transformation T has two fixed points z0 and z∞. Choose a Möbius

transformation A with A(z0) = 0 and A(z∞) = ∞. Then the conjugate A◦T ◦A−1 fixes 0 and ∞. This

implies that A ◦ T ◦A−1 is represented by a matrix
(

λ 0
0 λ−1

)
for some λ 6= −1, 0,+1. Consequently,

A ◦ T ◦A−1 = Mλ2 .

Suppose that T has 1 fixed point z0 only. Choose A with A(z0) = ∞. Then A ◦ T ◦ A−1 fixes ∞
alone. This means that it is z 7→ z + b for some b 6= 0. By replacing A by b−1A we get A ◦T ◦A−1 = P .

�

Exercise:
-11. When are two of the Möbius transformations Mk and P conjugate?
12. Find all of the Möbius transformations that commute with Mk for a fixed k. Hence describe the

group
Z(T ) = {A ∈ Möb : A ◦ T = T ◦A}

for an arbitrary Möbius transformation T . Describe the set {A(zo) : A ∈ Z(T )} for zo a point in
P.

A non-identity Möbius transformation is said to be:

parabolic if it is conjugate to P ;

elliptic if it is conjugate to Mk for |k| = 1 (k 6= 1);

hyperbolic if it is conjugate to Mk for k ∈ R+ (k 6= 0,+1);

loxodromic if it is conjugate to Mk for k ∈ C with |k| 6= 1 and k /∈ R+.

So a Möbius transformation T : z 7→ az+b
cz+d , with ad− bc = 1, is

the identity if
(

a b
c d

)
is conjugate to ±

(
1 0
0 1

)
.

parabolic if
(

a b
c d

)
is conjugate to ±

(
1 1
0 1

)
.
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elliptic if
(

a b
c d

)
is conjugate to

(
λ 0
0 λ−1

)
for some λ with |λ| = 1.

hyperbolic if
(

a b
c d

)
is conjugate to

(
λ 0
0 λ−1

)
for some λ with λ ∈ R and λ 6= −1, 0,+1.

loxodromic if
(

a b
c d

)
is conjugate to

(
λ 0
0 λ−1

)
for some λ with λ /∈ R and |λ| 6= 1.

Theorem 9.1 shows that every non-identity transformation falls into one of these classes. It is simple
to tell which by considering the trace.

Corollary 9.2 Trace determines conjugacy class of a Möbius transformation

Let T be a non-identity Möbius transformation represented by a matrix M =
(

a b
c d

)
with determinant

1. Then T is

parabolic ⇔ trM = ±2;
elliptic ⇔ −2 < trM < 2;
hyperbolic ⇔ trM < −2 or trM > 2;
loxodromic ⇔ trM /∈ R.

Proof:
We know that T is conjugate to Mk or to P . This means that the matrix M is conjugate to(

λ 0
0 λ−1

)
for λ a square root of k, or to ±

(
1 1
0 1

)
. Now we simply note that

tr
(

λ 0
0 λ−1

)
= λ + λ−1 and tr

(
1 1
0 1

)
= 2 .

�

Exercise:

-13. If M is a 2× 2 matrix with determinant 1, show that the characteristic equation for M is

t2 − (trM)t + 1 = 0 .

Deduce that the trace determines the eigenvalues of M .

14. Suppose that the Möbius transformation T is represented by the matrix M but that det M 6= 1.
Show that T is parabolic if and only if (tr M)2 = 4det M . Establish similar conditions for T to be
elliptic, hyperbolic or loxodromic.

It is now fairly simple to visualise how Möbius transformations act on the Riemann sphere. An
elliptic transformation is conjugate to z 7→ eiθz. This rotates the sphere fixing 0 and ∞. Each point is
moved along a circle. A hyperbolic transformation is conjugate to z 7→ kz for k > 1. This moves points
along arcs of circles from one fixed point towards the other. A loxodromic transformation is conjugate
to z 7→ kz for k /∈ R. This moves points along logarithmic spirals away from one fixed point and towards
the other. Finally, a parabolic transformation is conjugate to z 7→ z +1. This maps points along a circle
through the single fixed point. The points are mapped away on one side and towards on the other. The
pictures below illustrate this.
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Elliptic Hyperbolic

Loxodromic Parabolic

9.2 Inversion

Let Γ be a circle on the Riemann sphere. Two distinct points z, z′ are inverse points for Γ if every
circle orthogonal to Γ through z also passes through z′. Also, when z ∈ Γ, we say that z and z itself
are inverse points. We will prove later that, for every point z there is a unique point z′ so that z, z′ are
inverse points for Γ.

For example, two points are inverse for the real axis R∪{∞} when they are complex conjugates of
one another.

Lemma 9.3 Möbius transformations preserve inverse points
Let T be a Möbius transformation and Γ a circle in P. If z and z′ are inverse points for Γ then T (z),
T (z′) are inverse points for T (Γ).
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Proof:
We know that the Möbius transformation T preserves angles and maps circles to circles. Any

circle through z orthogonal to Γ is therefore mapped to a circle through T (z) orthogonal to T (Γ). The
original circle passes through z′ so the the image passes through T (z′) as required. �

Proposition 9.4 Inversion
For each circle Γ in the Riemann sphere and each point z ∈ P there is a unique point J(z) with z, J(z)
inverse points for Γ.

The map J is called inversion in Γ. It is an involution: J2 = I and reverses orientation, so it is certainly
not a Möbius transformation. J fixes every point of the circle Γ.

Proof:
It is clear that C(z) = z is the unique point with z, C(z) inverse points for R ∪ {∞}.

For any circle Γ we can find a Möbius transformation T that maps R∪{∞} onto Γ. Now the lemma
shows that J(z) = T (C(T−1(z))) is the unique point with z, J(z) inverse points for Γ. �

.

Example: Inversion in the unit circle.

The Möbius transformation

T : z 7→ −i

(
z + i

z − i

)
maps the unit circle T onto the real axis. (It is a rotation of the Riemann sphere about an axis through
1 and −1.) Hence, inversion in T is given by

J(z) = T−1(T (z)) =
1
z

.

More generally, when Γ = {z ∈ C : |z− c| = r}, then two points z, z′ are inverse points for Γ when they
lie on the same half-line from c to ∞ and |z − c| |z′ − c| = r2. Hence

J(z) = c +
r2

z − c
.

Exercise:

15. Show that inversion maps any circle to another circle. Show that inversion preserves the magnitude
of angles but reverses their orientation.

Inversions in circles are analogous to reflections. Our ultimate aim is to find a metric on the ball
B3 = {x ∈ R3 : ||x|| < 1}, so that the Möbius transformations form the orientation preserving isometry
group of B3 for this metric. The inversions will then be reflections in hyperbolic planes. Before achieving
this goal we will study the simpler case of those Möbius transformations that map a disc onto itself.

Proposition 9.5 The composition of two inversions is Möbius.
The composition of an even number of inversions is a Möbius transformation.
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Proof:
Let C be the particular inversion z 7→ z. If Γ is a circle, we can find a Möbius transformation

T that maps R ∪ {∞} onto Γ. Then inversion in Γ is given by J = T ◦ C ◦ T−1.

If T (z) =
az + b

cz + d
, then C ◦ T ◦ C(z) =

az + b

cz + d
. This shows that C◦T ◦C is a Möbius transformation.

Hence,
C ◦ J = C ◦ T ◦ C ◦ T−1 = (C ◦ T ◦ C) ◦ T−1

is a Möbius transformation, as is its inverse J ◦ C.

Now, if J1, J2 are two inversions we can write

J2 ◦ J1 = (J2 ◦ C) ◦ (C ◦ J1)

to show that J2 ◦ J1 is a Möbius transformation. �

It is quite easy to identify the Möbius transformations that we obtain by composing two inversions.
Suppose that J1, J2 are inversions in the circles Γ1,Γ2 respectively. If Γ1 and Γ2 cross at two points
w1, w2, then we can conjugate by a Möbius transformation that sends these points to 0 and ∞ respec-
tively. This transforms Γ1 and Γ2 to two straight lines through 0 (and ∞). The inversions become
reflections in these lines. So J2 ◦ J1 is the elliptic transformation rotating about an axis through 0 and
∞ through twice the angle between the lines. Clearly we can obtain any elliptic transformation in this
way.

Similarly, if Γ1 and Γ2 touch at a single point w, then we can transform w to ∞ and see that J2 ◦J1

is a parabolic transformation fixing ∞.

Finally, if Γ1 and Γ2 are disjoint, then we can conjugate them to get two concentric circles
{z : |z| = 1} and {z : |z| = R}. Then

J1(z) =
1
z

; J2(z) =
R2

z
; so J2 ◦ J1(z) = R2z .

Hence J2 ◦ J1 is a hyperbolic transformation.

It is clear that we can obtain any elliptic, parabolic or hyperbolic transformation in this way.
There are no other ways that two circles can intersect, so loxodromic transformations can not be the
composition of two inversions.

Exercise:

-16. Show that any loxodromic transformation is the composite of 4 inversions.
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10 THE HYPERBOLIC PLANE, I

10.1 Möbius Transformations of the unit disc

Inversion in the unit circle is J : z 7→ 1/z. This fixes points of the unit circle T and interchanges
the unit disc D and the complementary disc D′ = {z ∈ P : |z| > 1}.

Proposition 10.1 Möbius transformations of the unit disc
A Möbius transformation T maps the unit disc onto itself if, and only if, it is of the form:

z 7→ az + b

bz + a
with |a|2 − |b|2 = 1 .

Proof:
Let T be the Möbius transformation T : z 7→ az+b

cz+d with ad − bc = 1. If T maps the unit disc
D onto itself, then it must also map the unit circle onto itself. Hence, it must map any pair of inverse
points for T to another pair of inverse points. This implies that J ◦ T ◦ J = T . Now

J(T (J(z))) =
dz + c

bz + a

so the matrices
(

d c
b a

)
and

(
a b
c d

)
both represent the same transformation. This means that

(
d c
b a

)
= ±

(
a b
c d

)
.

If we have the + sign, then the matrix is(
a b
b a

)
with |a|2 − |b|2 = 1

as required. If we have the − sign, then the matrix is(
a b
−b −a

)
with −|a|2 + |b|2 = 1. So |T (0)| = | − b/a| > 1, which is impossible if T maps D onto itself.

Conversely, suppose that

T : z 7→ az + b

bz + a
with |a|2 − |b|2 = 1 .

Then J ◦T ◦J = T . Any point z ∈ T satisfies J(T (z)) = T (J(z)) = T (z) so T maps the unit circle onto
itself. Consequently, T must map the unit disc onto either D or the complementary disc D′. However,
|T (0)| = |b/a| < 1 so it must map onto D. �

The Möbius transformations that map D onto itself form a subgroup

Möb(D) =
{

z 7→ az + b

bz + a
: |a|2 − |b|2 = 1

}
of the Möbius group. This is the Möbius group of the disc D.
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Example: For each ω with |ω| = 1, the map z 7→ ωz is clearly in Möb(D). Also, for each zo ∈ D the
map

z 7→ z + zo
1 + zoz

is represented by the matrix  1√
1−|zo|2

zo√
1−|zo|2

zo√
1−|zo|2

1√
1−|zo|2


and so is in Möb(D).

Exercise:
17. Show directly that the map

z 7→ ωz + zo
1 + zoωz

maps the unit disc D onto itself when |ω| = 1 and zo ∈ D. Show conversely, that every transforma-
tion in Möb(D) is of this form.

.

For any other disc ∆ in the Riemann sphere, we can do the same argument as above to find the
group Möb(∆) of Möbius transformations that map ∆ onto itself. This is a subgroup of the full Möbius
group conjugate to Möb(D). For, we can find a transformation T with T (D) = ∆. Then

A ∈ Möb(D) if, and only if, T ◦A ◦ T−1 ∈ Möb(∆) .

A particularly important example is when ∆ is the upper half-plane: R2
+ = {x + iy ∈ C : y > 0}.

Inversion in the boundary of this is complex conjugation J : z 7→ z. So a Möbius transformation
T : z 7→ az+b

cz+d with ad− bc = 1 maps R2
+ onto itself when J ◦ T ◦ J = T and T (i) ∈ R2

+. Now

J ◦ T ◦ J : z 7→ az + b

cz + d

so we need (
a b
c d

)
= ±

(
a b
c d

)
.

The + sign gives transformations z 7→ az+b
cz+d with a, b, c, d ∈ R and ad− bc = 1. These do map the upper

half-plane onto itself. The − sign gives z 7→ az+b
cz+d with a, b, c, d ∈ iR and ad − bc = 1. These map the

upper half-plane onto the lower half-plane. This shows that every Möbius transformation mapping the
upper half-plane onto itself is represented by a matrix in SL(2, R). So Möb(R2

+) ∼= SL(2, R)/{I,−I}.

10.2 The Hyperbolic Metric on D

We wish to define a new metric, the hyperbolic metric, on the unit disc D for which each of the
Möbius transformations in Möb(D) will be an isometry.

We begin by defining this metric for an infinitesimal displacement dz. This should have length
ds = λ(z)|dz| for some density function λ : D → (0,∞). More formally, this means that a smooth curve
γ : [a, b] → D should have length

L(γ) =
∫ b

a

λ(γ(t)) |γ′(t)| dt .

If such a metric is to have each transformation in Möb(D) as an isometry, then the function λ is
almost completely determined. For

T : z 7→ z + zo
1 + zoz
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is a Möbius transformation mapping D onto D for each zo ∈ D and so must be an isometry. An
infinitesimal displacement dz from 0 is mapped by T to the T ′(0)dz at zo. So we must have

λ(0)|dz| = λ(zo)|T ′(0)dz| .

This means that
λ(0) = λ(zo)|T ′(0)| = λ(zo)(1− |zo|2) .

So the metric must be given by ds = K
1−|z|2 |dz| at the point z ∈ D. It is usual to set the constant K to

2. So we define the hyperbolic density on D to be

λ(z) =
2

1− |z|2
for z ∈ D .

The hyperbolic density increases as we approach the boundary of the disc. This means that a
constant Euclidean displacement increases in hyperbolic length as we approach the boundary. Simi-
larly, a displacement of constant hyperbolic length has decreasing Euclidean length as we approach the
boundary.
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M.C. Escher, Circle Limit IV (1960)

In Escher’s picture above, all of the angels are of the same hyperbolic size even though, to our
Euclidean eyes, they appear to get smaller as we approach the boundary.

Having defined the hyperbolic density that gives the length of infinitesimal displacements, it is
simple to define the hyperbolic metric. The hyperbolic distance ρ(z0, z1) is the infimum of the lengths

L(γ) =
∫ b

a

λ(γ(t)) |γ′(t)| dt =
∫ b

a

2|γ′(t)|
1− |γ(t)|2

dt

over all smooth curves γ : [a, b] → D that have γ(a) = z0 and γ(b) = z1. We will see that there is a path
γ from z0 to z1 that has shortest hyperbolic length. This is the hyperbolic geodesic from z0 to z1.

Lemma 10.2 Hyperbolic geodesics from the origin.

The hyperbolic geodesic from 0 to z ∈ D is a radial line and it has hyperbolic length log
(

1 + |z|
1− |z|

)
.

Proof:
It is clear that rotation about 0 preserves the hyperbolic length of any curve, so we may assume

that z = R ∈ [0, 1).
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Use polar co-ordinates to write a curve γ : [a, b] → D as γ(t) = r(t)eiθ(t). We will assume that
γ(a) = 0 and γ(b) = z = R > 0. Then the hyperbolic length of γ is more than the hyperbolic length of
its radial part, for

L(γ) =
∫ b

a

2|γ′(t)|
1− |γ(t)|2

dt =
∫ b

a

2|r′(t) + iθ′(t)r(t)|
1− r(t)2

dt >
∫ b

a

2|r′(t)|
1− r(t)2

dt = L(r) .

Moreover, |r′(t)+ iθ′(t)r(t)| =
√

r′(t)2 + r(t)2θ′(t)2 so we have equality only when θ′(t) is identically 0.
This shows that the radial path from 0 to z is the shortest path from 0 to z.

The length of this radial path is:∫ R

0

2
1− r2

dr = log
(

1 + R

1−R

)
so we see that

ρ(0, z) = log
(

1 + |z|
1− |z|

)
.

�

Theorem 10.3 Hyperbolic metric on the unit disc.
The expression

ρ(z0, z1) = inf {L(γ) : γ is a smooth curve in D from z0 to z1}

gives a metric on D for which each Möbius transformation that maps D onto itself is an isometry. A
geodesic for this metric is the arc of a circle orthogonal to the unit circle. This is the hyperbolic metric
on D.

Proof:
Proposition 10.1 shows that any Möbius transformation from D onto D must be of the form

T : z 7→ az + b

bz + a

with |a|2 − |b|2 = 1. For this we have

T ′(z) =
1

(bz + a)2
.

A straightforward calculation gives:

1
1− |T (z)|2

=
|bz + a|2

|bz + a|2 − |az + b|2
=
|bz + a|2

1− |z|2
.

So we see that
λ(T (z))|T ′(z)| = 2

1− |T (z)|2
|T ′(z)| = 2

1− |z|2
= λ(z) .

This shows that ρ(T (z0), T (z1)) = ρ(z0, z1).

The previous lemma certainly shows that ρ(0, z) > 0 whenever z 6= 0. Since we can always find a
T ∈ Möb(D) with T (z0) = 0, it follows that ρ(z0, z1) > 0 whenever z0 6= z1. The symmetry and triangle
inequality for ρ are obvious, so ρ is a metric.

The lemma shows that the geodesic from 0 = T (z0) to T (z1) is a radial line segment. This is a
segment of a straight line through 0 orthogonal to the unit circle. The Möbius transformation T maps
T onto itself and preserves angles, so the geodesic from z0 to z1 is an arc of the circle through z0 and
z1 that is orthogonal to T. �
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11 THE HYPERBOLIC PLANE, II

11.1 The Hyperbolic Metric on a Half Plane.

Rather than working with the unit disc, we could work with any other disc ∆. We know that there
is a Möbius transformation T that maps ∆ onto D and we define the hyperbolic metric on ∆ so that
this is an isometry from ∆ with this metric to D with the hyperbolic metric. This definition does not
depend on which transformation T we choose. For, if S is another Möbius transformation that maps ∆
onto D, then R = S ◦ T−1 will be a Möbius transformation that maps D onto itself. This means that R
is an isometry for the hyperbolic metric on D. Hence T and S give the same metric on ∆.

An important example is when ∆ is the upper half-plane R2
+. For this we can take T to be the map

T : z 7→ i

(
z − i

z + i

)
.

(This is rotation of the Riemann sphere about an axis through ±1.) The hyperbolic metric on R2
+ will

then be ds = µ(z)|dz| for some density function µ. For T to be an isometry we must have

µ(z)|dz| = λ(Tz)|T ′(z)||dz| .

So

µ(z) =
2|T ′(z)|

1− |T (z)|2
=

2
∣∣∣ −2
(z+i)2

∣∣∣
1−

∣∣∣ z−iz+i

∣∣∣2 =
1

Im(z)
.

The hyperbolic geodesics on the upper half-plane are half circles orthogonal to R, together with half-lines
parallel to the imaginary axis.

11.2 Inversions

Let γ be a hyperbolic geodesic for D. Then γ is an arc of a circle Γ that is orthogonal to T.
Therefore inversion J in Γ maps D onto itself. We will call this inversion in γ.

Proposition 11.1 Inversions preserve the hyperbolic metric
Inversion in a hyperbolic geodesic preserves the hyperbolic metric.

Proof:
It is clear that the inversion C : z 7→ z preserves the hyperbolic metric. Suppose that J is

inversion in a geodesic γ. Then Proposition 9.5 shows that C ◦ J is a Möbius transformation. Both C
and J maps the unit disc D onto itself, so C ◦J will also do so. Hence, it must be a hyperbolic isometry.
Therefore, J = C ◦ (C ◦ J) preserves hyperbolic lengths. �

We can now consider the Möbius transformations that we get by composing two inversions in
hyperbolic geodesics. The two geodesics may either cross at a point w ∈ D, or meet at a point w ∈ T,
or not meet at all in the closure of D. As at the end of §8 we see that the composition of these two
inversions is elliptic, parabolic or hyperbolic in these three cases.

Let T be a Möbius transformation that maps D onto itself. Then Proposition 10.1 shows that

T : z 7→ az + b

bz + a
for some a, b ∈ C with |a|2 − |b|2 = 1. This fixes the points

iIm(a)±
√

Re(a)2 − 1
b

.

The trace of the matrix is 2Re(a), so Corollary 9.2 shows that T can not be loxodromic. If T is elliptic,
then −1 < Re(a) < 1, one fixed point w is in D and the other is 1/w. If T is parabolic, then Re(a) = ±1
and there is a single fixed point on T. If T is hyperbolic, then Re(a) > 1 or Re(a) < −1 and there are
two fixed points both on T.
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12 FUCHSIAN GROUPS

We can give any disc ∆ ⊂ P the hyperbolic metric and take it as a model for the hyperbolic plane.
The orientation preserving isometries for this metric are the Möbius transformations that map ∆ onto
itself. A subgroup G of Möb(∆) is a Fuchsian group if it is discrete. In this section we will look at some
examples of Fuchsian groups and see that there is a very great variety.

We will study Fuchsian groups by looking at the orbits of points in the hyperbolic plane. These
orbits must be discrete, so their limit points will lie on the unit circle. These limit points form the limit
set of the group. We will also try to find fundamental sets for the group acting on ∆. The images of
the fundamental set under the group G cover all of the hyperbolic plane and form a tessellation of the
plane. Often exhibiting this tessellation will be the simplest way to prove that the group is discrete.

12.1 Single generator Fuchsian groups

Proposition 12.1
A non-identity Möbius transformation T that maps a disc ∆ onto itself is one of the following:

(a) Elliptic with two fixed points, one in ∆ and one in the complementary disc;

(b) Hyperbolic with two fixed points, both on the boundary ∂∆ of ∆ in P;

(c) Parabolic with one fixed point, which lies on ∂∆.

Proof:
We know, from Theorem 9.1 , that T has either one or two fixed points in P.

Suppose that T has two fixed points. Then T is conjugate to Mk : z 7→ kz for some k 6= 0, 1.
When |k| = 1, the only discs Mk maps onto themselves are {z ∈ P : |z| < r} and {z ∈ P : |z| > r}.
Hence we are in case (a). When k > 0 (k 6= 1), the only discs mapped onto themselves are the half-
planes {z ∈ P : Re(eiθ)z) > 0}. Hence we are in case (b). (All other values for k give loxodromic
transformations and these map no disc onto itself.)

Suppose that T has only one fixed point. Then T is conjugate to P : z 7→ z + 1. The only discs
mapped onto themselves by P are the half-planes {z ∈ P : Im(z) > c}. Hence we are in case (c). �

By using the conjugates Mk for |k| = 1, Mk for k > 1 and P , it is simple to see when the group
G = 〈T 〉 generated by a transformation T is discrete.

Elliptic:
By conjugating we get Mk : z 7→ kz for some k with |k| = 1. This is a rotation about 0 so the group it
generates is discrete when it is of finite order. The orbits in this case are finite and a fundamental set is
a sector of the unit disc. Consequently, the group generated by the elliptic transformation T is discrete
when T is of finite order and a fundamental set is a sector from the fixed point bounded by two half
geodesics. The tessellation by images of this fundamental set are shown in the first diagram below.

Hyperbolic:
By conjugating we get Mk : z 7→ kz for some k > 0 (k 6= 1). This generates an infinite cyclic group
which is always discrete with the set {z : 1 6 |z| < k} as a fundamental set. Hence the group generated
by the hyperbolic transformation T is discrete; the orbits are doubly infinite sequences (Tnzo)n=∞

n=−∞
that converge to the two fixed points of T ; and a fundamental set is the region between two suitable
disjoint geodesics.

Parabolic:
By conjugating we get P : z 7→ z + 1. This generates an infinite cyclic group which is always discrete
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with the set {z : 0 6 Re(z) < 1} as a fundamental set. Hence the group generated by the parabolic
transformation T is discrete; the orbits are doubly infinite sequences (Tnzo)n=∞

n=−∞ that converge to the
single fixed point of T ; and a fundamental set is the region between two suitable geodesics that both
end at the fixed point.

Elliptic Hyperbolic Parabolic

In the case of a hyperbolic transformation T we call the hyperbolic geodesic joining the two fixed
points the axis of T . It is clear that T maps its axis onto itself.

Exercise:

18. Show that a hyperbolic transformation T moves any point on its axis by a fixed hyperbolic distance
along the axis. This distance is called the translation length of T . Show how to calculate the
translation length from the trace of a matrix that represents T .

It is also useful to use Proposition 9.5 and consider the Möbius transformation as a composition
of two inversions in hyperbolic geodesics.

12.2 Triangle Groups

Let U be a “triangular” region bounded by three disjoint geodesics γ1, γ2, γ3. Let Jk be inversion
in the geodesic γk. Then the Möbius transformations: A = J2 ◦ J1, B = J3 ◦ J2 generate a group G.
Note that

J1 ◦ J2 = A−1 ; J2 ◦ J3 = B−1 ; J3 ◦ J1 = B ◦A ; J1 ◦ J3 = A−1 ◦B−1

so any product of an even number of the inversions is an element of G. The set F that is the union of
the closure of U in D and J2(U) is a fundamental set for G. (The closure of U is a fundamental set
for the larger group generated by J1, J2 and J3.) The quotient D/G is homeomorphic to a sphere with
three holes: a “pair of pants”.

G is a free group generated by A and B. For suppose that we can write g ∈ G as a product

g = Ak(1)Bk(2)Ak(3) . . . Bk(N) with each k(j) 6= 0 .

If k(1) > 0 (so the product for g begins with an A) then the copy g(F ) of the fundamental set is separated
from F by the geodesic γ1. Similarly, if g begins with A−1 (or B or B−1, then g(F ) is separated from
F by J2(γ1) (or γ3 or J2(γ3)). Hence we can only have g = I when the product for g is trivial and does
not begin with any of A,A−1, B, B−1.

Any orbit of G contains exactly one point in each copy g(F ) of the fundamental set. The fixed
points of each non-identity element of G clearly give points in the limit set. The limit set is like a Cantor
set: It is a subset of ∂D but omits points in the open intervals where F meets ∂D. Similarly, it omits
points where A(F ), B(F ), AB(F ), etc meet ∂D.
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F A(F )B(F )

B
−1(F )

A
−1(F )

AB
−1(F )

AB(F )

A
2(F )

BA
−1(F )

B
2(F )

BA(F )

B
−1

A(F )

B
−1

A
−1(F )B

−2(F )

A
−1

B(F )

A
−2(F )A

−1
B
−1(F )

A

B

The group G is certainly discrete. For suppose that (gn) is a sequence of non-identity transforma-
tions in G that converge to I. Then gn(zo) → zo as n →∞. When we choose zo to be an interior point
of the fundamental set F we see that this is impossible.
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We can also consider the groups generated by inversions in the sides of a triangle where the sides
cross. Then the Möbius transformations A,B are elliptic rather than hyperbolic. To get a Fuchsian
group these elliptic elements must be of finite order, so the angles of the triangle must be π/k for some
integers k. The sum of the angles of a hyperbolic triangle is strictly less than π, so there are many
triangles where these conditions are satisfied. For example we may construct a triangle with all angles
π/4 and obtain a tessellation as shown below.

The limit set in these cases is all of the unit circle.
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13 THE MODULAR GROUP

In many ways the most interesting triangle group is when the triangle has all of its angles 0. The
three vertices all lie on the boundary ∂D and the compositions of two inversions is parabolic. This group
is important in may branches of Mathematics. Rather than studying it directly, we will look at a closely
related group first: the Modular group.

The Modular group M is the group of Möbius transformations of the form

z 7→ az + b

cz + d

with a, b, c, d ∈ Z and ad− bc = 1. Hence M is the quotient PSL(2, Z) of the matrix group SL(2, Z) by
{I,−I}. The modular group acts as a group of hyperbolic isometries on the upper half-plane R2

+. This
group is certainly discrete because the integers are discrete. We wish to find a fundamental set for the
modular group and the corresponding tessellation.

Consider the orbit Ω of a point w ∈ R2
+. For a transformation T : z 7→ az+b

cz+d in the modular group
we have

Im(T (w)) = Im
(

(aw + b)(cw + d)
|cw + d|2

)
=
(

1
|cw + d|2

)
Im(w) .

Hence,
Im(T (w)) > Im(w) ⇔ 1 > |cw + d| .

The points cw + d all lie in the lattice Zw + Z, so only a finite number can lie within the unit disc.
Hence there are only a finite number of pairs (c, d) with Im(T (w)) > Im(w). In particular, there are
only finitely many values of Im(z) for z ∈ Ω which are greater than Im(w). Consequently, there is a
point wo ∈ Ω where Im(wo) is maximal.

There are always infinitely many points in Ω where the imaginary part is greatest. For the matrix(
1 1
0 1

)
is in SL(2, Z) and so z 7→ z + 1 is in the modular group. Consequently, wo + k is in Ω for each

k ∈ Z.

For each pair of coprime integers c, d we can find integers a, b with ad − bc = 1, so the matrix(
a b
c d

)
is in the modular group. Note that the point wo must satisfy |cwo + d| > 1 for each such pair

(c, d). This is the same as
∣∣∣∣wo +

d

c

∣∣∣∣ > 1
c

so we see that wo must lie outside the shaded region below.

-2 -1 0 1 2

i

x

iy
S = {z : |z − k| > 1 for all k ∈ Z}

This means that, for any point w ∈ R2
+, we can find a point wo in the orbit of w that lies in the

unshaded region or on its boundary. Since z 7→ z + 1 is in the modular group, we can choose wo to lie
in the region {z = x + iy ∈ R2

+ : − 1
2 < x 6 1

2 , |z| > 1} shaded below.

Lecture 13 51



x

iy

-2 -1 0 1 2

i

This set: {z = x + iy ∈ R2
+ : − 1

2 < x < 1
2 , |z| > 1}, together with part of the boundary is a

fundamental set for the modular group.

Proposition 13.1 Fundamental set for the modular group.
For every point z in R2

+, there is a transformation T in the modular group with T (z) lying in the set

F = {z = x + iy ∈ R2
+ : − 1

2 6 x 6 1
2 , |z| > 1} .

Moreover, two points in F are in the same orbit for the modular group if and only if they are either

− 1
2 + iy and 1

2 + iy with y > 1
2

√
3 or

ieiθ and ie−iθ with 0 6 θ 6 1
3π

Proof:
Let A : z 7→ z + 1 and B : z 7→ −1/z. Both of these are in the modular group.

If z lies in the set
S = {w : |w − k| > 1 for all k ∈ Z}

then there is an integer k with Ak(z) = z + k ∈ F . If z lies outside this set, then we have shown that
there is an element z′ in the orbit of z that lies within S.

Suppose that z and z′ are in the same orbit and both lie within F . Then both have maximal
imaginary part for that orbit, so their imaginary parts are equal. Since they are in the same orbit, we

must have z′ =
az + b

cz + d
for

(
a b
c d

)
∈ SL(2, Z). Since the imaginary parts of z and z′ are equal, we

must have |cz + d| = 1. Hence, either c = 0 and d = ±1 or c = ±1 and d = 0. In the first case,
z′ = z +k = Ak(z) for some integer k and we are in the first case of the proposition. In the second case,

z′ = k − 1
z

= AkB(z) and we are in the second case. �

It is useful to divide the fundamental set for the modular group into two. In the diagram below,
the set is divided into two triangles, one shaded and the other unshaded. The modular group permutes
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the shaded triangles and also permutes the unshaded ones. The inversions in the three sides of one of
these triangles gives a larger group with the modular group as an index two subgroup.

x-2 -1 0 1 2

iy

Finally, the diagram below shows that there we can join together 6 of these triangles to form an
ideal triangle which has all three vertices on the boundary of R2

+. Inversions in the sides of this ideal
triangle give a subgroup of the group generated by inversions in sides of the smaller triangles.

x-2 -1 0 1 2

iy
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14 HYPERBOLIC 3-SPACE

In this section we will define a hyperbolic metric on the unit ball in R3 so that the orientation
preserving isometries are the full group of Möbius transformations. To do this, we first define the
metric, then consider inversions, and finally show that every Möbius transformation is the composition
of inversions.

14.1 The Hyperbolic Metric

Let B3 be the unit ball {x ∈ R3 : ||x|| < 1} in Euclidean 3-space. The hyperbolic density on B3 is

λ(x) =
2

1− ||x||2
.

The hyperbolic length of a smooth curve γ : [a, b] → B3 is then

L(γ) =
∫ b

a

λ(γ(t)) ||γ′(t)|| dt =
∫ b

a

2||γ′(t)||
1− ||γ(t)||2

dt .

The hyperbolic metric ρ on B3 is defined by

ρ(xo,x1) = inf
{
L(γ) : γ is a smooth curve in B3 from xo to x1

}
.

A curve that attains this infimum is a hyperbolic geodesic from xo to x1. The arguments used for the
hyperbolic metric on the unit disc ( Lemma 10.2 and Theorem 10.3 ) show that:

Proposition 14.1 Hyperbolic metric on B3

The hyperbolic metric ρ is a metric on the unit ball B3. Moreover, the hyperbolic geodesic from the

origin 0 to any point x ∈ B3 is a radial path with hyperbolic length log
(

1 + ||x||
1− ||x||

)
.

�

The disc B3 ∩ {x : x3 = 0} = {(x1, x2, 0) : |x1|2 + |x2|2 < 1} can be identified with the unit disc
D in C by letting (x1, x2, 0) correspond to x1 + ix2. Then the hyperbolic metric on B3 restricts to
give the plane hyperbolic metric on the D. We will see shortly that much more is true: the restriction
of the hyperbolic metric to the intersection of B3 with a sphere orthogonal to the unit sphere gives a
hyperbolic plane metric.

14.2 Inversion

We are used to thinking of extending the complex plane C by adding a point ∞ and identify-
ing the resulting space with the Riemann sphere P. We can also do this in higher dimensions. The
N -dimensional Euclidean space RN is extended by adjoining a point ∞ to obtain RN∞. This is homeo-
morphic to the unit sphere SN in RN+1 and we can use stereographic projection to identify RN∞ with
SN . We will only consider the 3-dimensional case although the results apply in higher dimensions.

As in the case of the Riemann sphere we will define circles to include straight lines, and spheres in
R3
∞ to include planes. So a sphere in R3

∞ is either of the form

S(c, r) = {x ∈ R3 : ||x− c|| = r}

for c ∈ R3 and r > 0, or else

Π(u, t) = {x ∈ RN : x · u = t} ∪ {∞}

for a unit vector u and t ∈ R. We call c and r the Euclidean centre and Euclidean radius of the sphere
S(c, r), while u is a unit normal to the plane Π(u, t).

We define inversion is a sphere Σ in R3
∞ exactly as in §9.2 . Two distinct points x,x′ are inverse

points for Σ if every circle orthogonal to Σ through x also passes through x′. Also, when x ∈ Σ, we say
that x and x itself are inverse points.
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Proposition 14.2 Inversion in spheres
For each sphere Σ in R3

∞ and each point x ∈ R3
∞ there is a unique point J(x) with x and J(x) inverse

points for Σ.

The map J is called inversion in Σ. It is an involution that reverses orientation.

Proof:
We already know from Proposition 9.4 that inversion in a circle maps the plane to itself. We

will use this to extend the result to higher dimensions.

Suppose first that Σ = S(c, r). Any plane π through x and c cuts Σ in a circle σ and we know
from Proposition 9.4 that there is a point x′ in π with x and x′ inverse points for σ. Indeed we know
that the inverse point is given by

J(x) = c +
(

r2

||x− c||2

)
(x− c) .

This expression makes sense for any point x ∈ R3
∞, so we only need to show that it does have the

properties we require. (Note that we should interpret this formula as saying that J(c) = ∞ and
J(∞) = c.)

If γ is any circle through x that crosses Σ orthogonally, then there is a plane π through γ. In this
plane, we know that x and J(x) are inverse points for the circle σ = Σ∩π in the plane π. Consequently,
γ must pass through J(x).

An entirely similar argument applies when Σ is a plane Π(u, t). Then we have

J(x) = x + 2(t− x · u)u .

�

We already know a lot about inversion in 2-dimensions. Since inversion in higher dimensions is
defined in terms of inversions in 2-dimensions, we readily obtain a variety of results about inversion.

Proposition 14.3 Inversion preserves spheres.
Let J be inversion in a sphere Σ. Then J maps any sphere U in RN∞ onto another sphere.

Proof:
Let Σ be the sphere S(c, r) and U the sphere S(d, s). Let ` be the straight line through c and

d. Then any plane π through ` cuts Σ is a circle σ and U in a circle u. We know that inversion in the
circle σ sends u to another circle, so we see that J(U) cuts π in a circle. This is true for every plane π
through `, so J(U) must be a sphere.

A similar but simpler argument applies when Σ or U are planes. �

Corollary 14.4 Inversion preserves circles.
Let J be inversion in a sphere Σ. Then J maps any circle γ in RN∞ onto another circle.

Proof:
The circle γ is the intersection of two spheres. Inversion maps each of these to another sphere

and the intersection of these two spheres is again a circle. �

Proposition 14.5 Inversion preserves angles.
Let J be inversion in a sphere Σ. If two curves α and β in R3

∞ cross at an angle θ, then J(α) and J(β)
also cross at an angle θ.
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Proof:
Let J be inversion in the sphere S(c, r). We wish to calculate the derivative J ′(x). To simplify

the algebra, translate and enlarge the sphere so that it becomes the unit sphere S(0, 1). Note that this
does not alter any angles.

Now J : x 7→
(

1
||x||2

)
x satisfies

J(x + h) =
(

1
||x||2 + 2x · h + ||h||2

)
(x + h)

= J(x) +
(

1
||x||2

)(
h−

(
2x · h
||x||2

)
x

)
+ o(h) .

So we see that J is differentiable at x with

J ′(x) : h 7→
(

1
||x||2

)(
h−

(
2x · h
||x||2

)
x

)
.

This is a scalar multiple of reflection in the plane orthogonal to x and so preserves angles (and reverses
orientation). �

Exercise:

19. Show from the formula

J(x) = c +
(

r2

||x− c||2

)
(x− c) .

for inversion in the sphere S(c, r) that inversion maps a sphere to another sphere.
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15 EXTENDING MÖBIUS TRANSFORMATIONS TO HYPERBOLIC SPACE

15.1 Inversions and the hyperbolic metric

Let Σ be a sphere that is orthogonal to the unit sphere S2 in R3. Then Σ meets S2 in a circle σ.
Proposition 14.3 shows that inversion J in Σ fixes σ and maps the unit sphere to another sphere.
Proposition 14.5 shows that this image sphere is also orthogonal to Σ. Hence J maps the unit sphere
onto itself. Therefore, J maps the ball B3 onto itself.

Conversely, any circle σ on the unit sphere S2 is the intersection of S2 with a sphere Σ orthogonal
to S2.

Throughout this section we will only be concerned with spheres Σ orthogonal to the unit sphere,
and the circle σ = Σ ∩ S2 where it meets the unit sphere.

Proposition 15.1 Inversions are hyperbolic isometries.
Let J be inversion in a sphere Σ orthogonal to the unit sphere S2. Then J is an isometry for the
hyperbolic metric but reverses orientation.

Proof:
Let x be a point of B3 and choose any plane π through the origin and x. Then π intersects Σ

in a circle γ and the map J acts on π as inversion in γ. Proposition 11.1 shows that inversion in γ is
an isometry for the hyperbolic metric on the disc π ∩B3. Hence J must be an isometry at x.

We have already seen that the derivative of J is orientation reversing. �

Exercise:

20. Let J be inversion in a sphere Σ and Q inversion in the unit sphere S2. Show that Σ is orthogonal
to S2 if and only if J ◦Q = Q ◦ J .

Lemma 15.2
For each point a ∈ B3 there is an inversion J in a sphere orthogonal to S2 that interchanges the origin
and a.

Proof:
If a = 0, then inversion in any plane through the origin (that is reflection in such a plane) will

do.

Otherwise, let Q(a) =
a

||a||2
and set

Σ =

{
x : ||x−Q(a)|| =

√
1− ||a||2
||a||

}
.

Then it is simple to check that inversion in Σ maps 0 to a. �

Proposition 15.3 Hyperbolic geodesics
Between any two distinct points of B3 there is an unique path with shortest hyperbolic length. This is
a section of a circle orthogonal to the unit sphere S2.
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Proof:
Suppose that a and b are two distinct points in the ball B3. We already know that the radial

path is the shortest path from a to b when a = 0 because of Proposition 14.1 .

For any other value of a, the lemma shows that there is an inversion J in a sphere orthogonal to
S2 with J(a) = 0. Since this inversion is a hyperbolic isometry, we see that the shortest path from a
to b must be the image of a radial path under J . Now Corollary 14.4 completes the proof. �

Suppose now that T is a Möbius transformation. This maps the unit sphere S2 to itself. We
know from §9 that T can be written as the composition of inversions in an even number of circles, say
σ1, σ2, . . . , σN . For each of these circles, there is a sphere Σn orthogonal to S2 which intersects S2 in the
circle σn. Let Jn be inversion in the sphere Σn. Then the composition JN ◦ JN−1 ◦ . . . ◦ J3 ◦ J2 ◦ J1 acts
on the sphere S2 as the Möbius transformation T . However, this composition gives a map T̃ from all
of R3

∞ to itself. This map agrees with T on the sphere S2 and maps the ball B3 onto itself. So we have
a way to extend the Möbius transformation T to the ball. This extension was introduced by Poincaré
and is often called the Poincaré extension of the Möbius transformation.

This extension is unique. For suppose that x is any point of B3. Choose a circle γ through x that
crosses S2 orthogonally at two points a and b. Then each inversion J in a sphere orthogonal to S2

maps γ to another circle orthogonal to S2. Consequently, T̃ (x) lies on the circle orthogonal to S2 that
joins the two points T (a) and T (b) in S2. This is true for every choice of γ so we see that the point
T̃ (x) is completely determined by the map T acting on the sphere. In particular, if we write T as a
composition of inversions in two different ways we must obtain the same extension T̃ .

Proposition 15.4 Extensions of Möbius transformations.
For every Möbius transformation T : S2 → S2 the extension T̃ : R3

∞ → R3
∞ maps the unit ball B3 onto

itself and is an orientation preserving isometry for the hyperbolic metric.

Proof:
Proposition 15.1 shows that each inversion Jn is an isometry for the hyperbolic metric, hence

the composition T̃ is also. Since T is the composition of an even number of inversions, we see that T̃
is the composition of an even number of the orientation reversing isometries Jn. Hence T̃ is orientation
preserving. �

Now we will prove that every orientation preserving isometry of B3 for the hyperbolic metric is an
extension of a Möbius transformation.

Theorem 15.5 Möbius transformations as isometries of hyperbolic 3-space.
Every orientation preserving isometry of hyperbolic 3-space B3 is T̃ for some Möbius transformation
T : S2 → S2.

Proof:
Suppose that A : B3 → B3 is an orientation preserving isometry for the hyperbolic metric

on B3. Then A(0) ∈ B3 so Lemma 15.2 gives an inversion J in a sphere orthogonal to S2 with
J(A(0)) = 0. Hence, A′ = J ◦A is an isometry of B3 that fixes 0.

For each unit vector u ∈ S2 we know that the path

γu : [0, 1) 7→ tu

is a hyperbolic geodesic with ρ(0, γu(t)) = log(1 + t)/(1− t). Hence, A′ ◦ γu must also be a hyperbolic
geodesic. Since it starts at the origin, we must have

A′(tu) = tv
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for some unit vector v. Write v = α(u).

Now observe that

lim
t→0+

ρ(tu1, tu2)
t

= 2||u1 − u2||

for any unit vectors uk. Since A′ is an isometry, this shows that

||α(u1)− α(u2)|| = ||u1 − u2|| .

It follows that α is an orthogonal linear map in O(3). This shows that A′ : R3
∞ → R3

∞ is orthogonal.

Finally we know that every orthogonal linear map is the composition of reflections in plane through
the origin. These are inversions, so we see that A′, and hence A, is the composition of inversions in
spheres orthogonal to S2. �

We have now proved that the groups Möb and Isom+(B3) are isomorphic with a Möbius transfor-
mation T corresponding to the extension T̃ . This means that the Möbius group Möb acts on hyperbolic
3-space B3. Usually we will not distinguish between T and its extension T̃ .

15.2 The upper half-space.

We can redo the arguments above for any ball in R3
∞ and obtain a hyperbolic metric on the ball

for which the orientation preserving isometries are the Möbius transformations. The most important
example is when the ball is the upper half-space:

R3
+ = {(x1, x2, x3) ∈ R3 : x3 > 0} .

The boundary of this is the extended complex plane C∞ = R2
∞. We can show that any Möbius

transformation acting on this boundary extends to an orientation preserving isometry of the upper
half-space for the hyperbolic metric with density:

λ(x) =
1
x3

.

We can also deduce the results for the upper half-space directly from those for the ball B3 for
inversion in the sphere

Σ =
{

x : ||x + e3|| =
√

2
}

where e3 = (0, 0, 1)

maps the upper half-space onto the ball and vice versa.
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16 ISOMETRIES OF H3

We have seen how to put a hyperbolic metric on the unit ball B3 in R3 or the upper half-space
R3

+. We will denote both of these by H3 and call them hyperbolic 3-space. The orientation preserving
isometries for hyperbolic 3-space have been identified with the group of Möbius transformations acting
on the boundary ∂H3. In this section we wish to study these isometries in more detail.

16.1 Examples in Hyperbolic Geometry

The hyperbolic metric is given by:

ds =
2

1− ||x||2
||dx|| on B3 and ds =

1
x3
||dx|| on R3

+ .

The hyperbolic geodesics are the arcs of circles orthogonal to the boundary ∂H3.

The plane {x : x3 = 0} meets the ball B3 in the unit disc and the hyperbolic metric on B3 restricts
to the hyperbolic plane metric on this disc. A similar result holds for the intersection of any other sphere
orthogonal to ∂H3 with H3. For suppose that Σ is the intersection with B3 of a sphere orthogonal to
∂B3. Then the boundary of Σ is a circle σ ⊂ ∂B3. We know that there is a Möbius transformation T
that maps this circle σ to the unit circle T. Since T acts isometrically on B3, it must map Σ to the
unit disc. Hence Σ with the hyperbolic metric is isometric to the hyperbolic plane. We call such an
intersection of a sphere orthogonal to ∂H3 with H3 a hyperbolic plane in H3.

Two hyperbolic planes that meet in H3 intersect in a hyperbolic geodesic. We think of geodesics
as the straight lines for hyperbolic geometry.

In order to develop our sense of what hyperbolic 3-space is like, we will prove a series of simple
results. In all of these we choose whichever model (B3 or R3

+) is easiest and apply isometries to make
the calculations simple.

A ball {x ∈ H3 : ρ(x, c) < ρo} is a Euclidean ball which lies entirely within H3. Note that the
Euclidean centre will not normally be c nor the Euclidean radius ρo.

Take H3 as B3 and consider first the case where c = 0. Then Proposition 14.1 shows that

ρ(x,0) = log
(

1 + ||x||
1− ||x||

)
.

Hence the ball is the set {x : ||x|| < tanh 1
2ρo}. Each Möbius transformation is a composition of

inversions and these map balls to balls, so the result continues to hold for any c ∈ B3.

There is a unique point of a geodesic γ closest to a point c in H3.

c a

γ
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Take H3 to be B3 and c = 0. The geodesic γ is then the arc of a circle orthogonal to the unit sphere
∂B3. This circle has a unique point a with smallest norm and, by the previous remark, this is closest
hyperbolically to 0. Note that the shortest hyperbolic path from 0 to a is a radial line. So we see that
the hyperbolic geodesic from a point c to the closest point of a hyperbolic geodesic γ is orthogonal to γ.

For two geodesics α, β in H3 which do not have a common endpoint on ∂H3 there are
unique points a ∈ α and b ∈ β with ρ(a, b) minimal.

By applying an isometry we may assume that H3 = R3
+ and α is the geodesic {(0, 0, x3) : x3 > 0}.

Consider the point x = (sin θ, 0, cos θ) ∈ R3
+. The shortest path from x to α is the arc

{(sinφ, 0 cos φ) : 0 6 φ 6 θ} .

This has hyperbolic length

ρo =
∫ θ

0

1
cos φ

dφ .

Now make the change of variables t = tan 1
2φ, so that cos φ = 1−t2

1+t2 and dt
dφ = 1

2 (1 + t2). This gives:

ρo =
∫ tan

1
2 θ

0

1 + t2

1− t2
2

1 + t2
dt =

∫ tan
1
2 θ

0

2
1− t2

dt = tanh−1(tan 1
2θ) .

Now the Möbius transformation T : z 7→ kz (k > 0) acts on R3
+ as

T : (x1, x2, x3) 7→ (kx1, kx2, kx3)

and this must be an isometry. So all of the points (k sin θ, 0, k cos θ) are at a hyperbolic distance ρo from
α. Similarly, T : z 7→ eiψz acts on R3

+ as

T : (x1 + ix2, x3) 7→ (eiψ(x1 + ix2), x3)

and this must be an isometry. Hence all of the points

{x ∈ R3
+ : x3 = ||x|| cos θ}

are at a hyperbolic distance ρo = tanh−1
(
tan 1

2θ
)

from α. This is a cone about the axis α.

0

α

a

θ

x

Exercise:
21. Draw the set of points that lie within a fixed hyperbolic distance ρo of a geodesic α in the unit disc

D and in the unit ball B3.
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Now suppose that β is a geodesic in R3
+ joining points of ∂R3

+ neither of which is 0 or ∞. Then
there will be a unique point b ∈ β with the angle

sin−1

(
x3

||x||

)
minimal. This is the point closest to α. It is clear that the shortest path from α to β is a geodesic that
crosses both α and β orthogonally.

α
β

γ

If two geodesics have a common endpoint, then they contain points that are arbitrarily
close.

Let α and β be geodesics in R3
+ with ∞ as their common endpoint. Then

α = {(a1, a2, x3) : x3 > 0} ; β = {(b1, b2, x3) : x3 > 0} .

Now it is clear that

ρ((a1, a2, x3), (b1, b2, x3)) 6
||(a1, a2)− (b1, b2)||

x3

so there are points of the two geodesics that are arbitrarily close together.

Two geodesics α and β in H3 are either:

(a) Parallel: when they have a common endpoint.

(b) Cross: when they intersect at a point of H3.

(c) Skew: when they have no common endpoint and do not intersect.

We have shown that two skew lines have a common normal joining the closest points of the two lines.
In case (b) there is also a common normal through the point of intersection. However, there is no such
normal for parallel lines unless the lines are identical.

16.2 Axes of Isometries

Let T be a Möbius transformation. When we think of T acting on the Riemann sphere, it has two
fixed points, say a and b. When we think of T acting on the hyperbolic 3-space H3, then there is a
geodesic α joining a and b. T maps this geodesic to itself since it fixes the endpoints. We call α the axis
of the Möbius transformation.

The Möbius transformation T acts isometrically on H3, so T must move the points of the axis a
fixed hyperbolic distance. This is called the translation length of T . It is 0 for elliptic transformations
but non-zero for hyperbolic and loxodromic transformations.
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Exercise:

22. Show that the translation length of the transformation Mk : z 7→ kz is log |k|. Hence show how to
find the translation length of the Möbius transformation

z 7→ 2z + 1
5z + 3

.

A parabolic transformation does not have an axis. If there were any geodesic that were mapped
onto itself, preserving direction, then both endpoints would be fixed. This can not occur if there is just
one fixed point on ∂H3.
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17 INVOLUTIONS

A Möbius transformation R which has finite order must be elliptic. In particular, an involution
which has R2 = I must be elliptic. We can conjugate R so that its fixed points are at 0,∞ ∈ R3

+. The
axis α of R is then the positive x3-axisjoining 0 to ∞. Then R : z 7→ −z on P and

R : (x1, x2, x3) 7→ (−x1,−x2, x3) for x ∈ R3
+ .

This fixes every point of the axis.

Note that, if π is a hyperbolic plane that contains the axis α of the involution R, then R maps this
plane to itself but interchanges the half-spaces on either side of it. On the plane π, the involution acts
as inversion in the geodesic α. In §11 we saw that every Möbius transformation of the disc could be
written as the composite of two inversions. Here we will prove that each Möbius transformation on P
can be written as the composite of two involutions.

Proposition 17.1 Isometries of H3 are compositions of two involutions.
Every Möbius transformation can be expressed as R2 ◦R1 for two elliptic involutions R1, R2.

Proof:
The identity is R2 for every involution R.

Suppose that P is parabolic. Then we may assume that it is P : z 7→ z + 1. This acts as

P : (x1, x2, x3) 7→ (x1 + 1, x2, x3)

on R3
+. For this, take

R1 : z 7→ −z and R2 : z 7→ 1− z .

Then R1, R2 are involutions with P = R2 ◦R1. Note that the axes of R1, R2 are

{(0, 0, x3) : x3 > 0} and {( 1
2 , 0, x3) : x3 > 0}

which have a common endpoint at the fixed point of P .

Suppose that T is a Möbius transformation with 2 fixed points. We may assume that these are 0
and ∞. So T : z 7→ λ2z for some λ 6= 0. Then T acts on R3

+ as

T : (x1 + ix2, x3) 7→ (λ2(x1 + ix2), |λ2|x3) .

For this, take

R1 : z 7→ 1
z

and R2 : z 7→ λ2

z
.

These are involutions with T = R2 ◦R1. Note that the axes of R1, R2 are

{(cos θ, 0, sin θ) : 0 < θ < π} and {(λ cos θ, 0, |λ| sin θ) : 0 < θ < π} .

These are identical when λ = ±1 and T = I. They cross at (0, 0, 1) when |λ| = 1 and T is elliptic.
Otherwise, they are skew and T is loxodromic or hyperbolic with its axis normal to both. �

Proposition 17.2
Let R1, R2 be involutions with axes α1, α2 in H3. Then

(a) If α1 = α2 then R2 ◦R1 = I.

(b) If α1 and α2 are parallel, then R2 ◦R1 is parabolic with the common endpoint of α1 and α2 as its
fixed point on ∂H3.

(c) If α1 α2 cross at a point P , then R2 ◦ R1 is elliptic with axis through P perpendicular to α1 and
α2.

(d) If α1, α2 are skew, then R2 ◦R1 is loxodromic or hyperbolic with axis normal to both α1 and α2.
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Proof:
(a) is obvious. For (b) conjugate so that in R3

+ we have:

α1 = {(a1, x3) : x3 > 0} and α1 = {(a2, x3) : x3 > 0}

for some a1, a2 ∈ C. Then

R1 : z 7→ 2a1 − z and R2 : z 7→ 2a2 − z

and R2 ◦R1 : z 7→ 2(a2 − a1) + z is parabolic with its single fixed point at ∞.

For (c) or (d), we know that there is a unique geodesic γ normal to both α1 and α2. Conjugate so
this is the x3-axis in R3

+. The geodesic αj is then a half-circle that crosses the x3-axis orthogonally, so
it must join points ±wj . Consequently,

Rj : z 7→
w2
j

z

and R2 ◦R1 : z 7→ (w2
2/w2

1)z is either elliptic, hyperbolic or loxodromic. �

Exercise:

23. Let R1, R2 be involutions with axes α1, α2 in H3. Show that R2 ◦ R1 is hyperbolic when both α1

and α2 lie in a hyperbolic plane.

Finally, let us look at the group G = 〈T 〉 generated by a single orientation preserving isometry T
of H3. The last proposition shows that we can write T as the composite R2 ◦R1 of two involutions with
axes α1, and α2. We will concentrate on the case where T is loxodromic or hyperbolic, since the other
cases are simpler. There is then a common normal γ to α1 and α2 and this is the axis for T . If we
parametrise γ by hyperbolic length, then we can assume that γ(0) is the point where α1 meets γ and
γ(τ) is the point where α2 meets γ. This means that

R1(γ(t)) = γ(−t) ; R2(γ(t)) = γ(2τ − t)) ; T (γ(t)) = R2(R1(γ(t))) = γ(2τ + t) .

So the translation length of T is 2τ : twice the distance between the axes α1 and α2.

Each point x ∈ H3 is closest to some point of γ and those points which are closest to γ(t) fill a
hyperbolic plane π(t). Since T is an isometry, it maps π(t) onto π(2τ + t). Hence the set

F =
⋃
{π(t) : 0 6 t < 2τ}

is a fundamental set for the group G = 〈T 〉. T maps the plane π(0) that bounds one side onto the plane
π(2τ) that bounds the other.

α1

α2

γ
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Note also that half of F : ⋃
{π(t) : 0 6 t 6 τ}

is a fundamental set of the larger group 〈R1, R2〉.

When T is parabolic, there is a fundamental set bounded by two hyperbolic planes that touch at
the fixed point of T on ∂H3. When T is elliptic of finite order, there is a fundamental set bounded by
two hyperbolic half-planes that meet on the axis of T .

Exercise:

24. Suppose that T is a Möbius transformation that maps the unit disc D onto itself. Then T also acts
as an isometry of the hyperbolic 3-space B3. How are fundamental sets for G = 〈T 〉 acting on D
related to fundamental sets for G acting on B3?
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18 KLEINIAN GROUPS

Möbius transformations are represented by 2× 2 complex matrices so a group of Möbius transfor-
mations is discrete if it is a discrete subset of the set of all 2×2 matrices. A Kleinian group is a discrete
subgroup of Möb. We will think of these groups acting as isometries of the hyperbolic 3-space H3.

Every Fuchsian group is certainly discrete when we think of it as a subgroup of Möb rather than a
subgroup of Möb(D). We will see many more examples later.

18.1 Finite Kleinian Groups

Any finite subgroup of Möb is certainly a Kleinian group. However, we will show that these finite
groups are all conjugate to finite subgroups of SO(3). So we already know which groups can arise: cyclic
and dihedral groups together with the tetrahedral, octahedral and icosahedral groups.

Lemma 18.1
Let S be a non-empty finite subset of H3. Then there is a unique closed hyperbolic ball B(c, ρ) of
smallest hyperbolic radius that contains S.

Proof:
Set ρo be the infimum of the radii ρ for which there is a centre c ∈ H3 with S ⊂ B(c, ρ).

Then there is a sequence ρn that decreases to ρ0 and a sequence of centres cn with S ⊂ B(cn, ρn). The
centres cn all lie within ρ1 of any chosen point of S, so we can find a convergent subsequence using the
Bolzano – Weierstrass Theorem. We will assume that cn → c as n → ∞. Then S ⊂ B(c, ρo). This
shows that there is at least one closed ball of smallest radius containing S.

Now suppose that there are two different closed balls with smallest radius ρ0 which contain S, say
B(c+, ρo) and B(c−, ρo). Let m be the midpoint of the hyperbolic geodesic from c+ to c−. We can
apply an isometry to H3 to move m to the origin. Then c+ = −c−. In the picture below, S must lie
in the intersection of the two balls B(c+, ρo) and B(c−, ρo), so it must lie in the shaded region. This is
contained in the closed ball centred on m with radius ρ(m, A). This radius is less than ρo, which is a
contradiction. �

c+c
−

m

A

Proposition 18.2 Finite Kleinian groups are conjugate to subgroups of SO(3).
Every finite subgroup of Möb is conjugate in the Möbius group to a subgroup of SO(3).
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Proof:
We will consider the finite group G acting on the unit ball B3. It has a finite orbit Ω = G(x) for

any point x ∈ B3. The lemma shows that this is contained within a unique smallest closed hyperbolic
ball, say B(c, ρo).

Each T ∈ G acts isometrically on B3 and permutes the elements of the orbit Ω. So

Ω = T (Ω) ⊂ T (B(c, ρo)) = B(T (c), ρo) .

This implies that T (c) = c, so every element of G fixes c.

Now conjugate by a Möbius transformation that maps c to the origin. Then G becomes a group of
hyperbolic isometries that fix the origin. These must be elements of SO(3). �

This proposition shows that we need to consider infinite Kleinian groups in order to obtain new
and interesting examples of such groups. To do this we need to think more carefully about the action
of a Kleinian group on hyperbolic 3-space.

18.2 Discontinuous Action

Let G be a subgroup of Möb = Isom+(H3). The group G acts discontinuously at xo ∈ H3 if there
is some δ > 0 for which {T ∈ G : ρ(xo, T (xo)) < δ} is finite. The group G acts discontinuously on H3

if it acts discontinuously at each point of H3.

If G acts discontinuously at xo, then the stabilizer: Stab(xo) = {T ∈ G : T (xo) = x0} is a finite
group and so conjugate to a finite subgroup of SO(3).

Lemma 18.3
Let G act discontinuously at a point x0 ∈ H3. Then, for any compact set K ⊂ H3, the set {T ∈ G :
T (K) ∩K 6= ∅} is finite.

Proof:
Since K is compact, it is certainly bounded, so there is a ρo with K ⊂ B(xo, ρo). If K∩T (K) 6=

∅, then we can find a ∈ K with T (a) ∈ K. So

ρ(T (xo),xo) 6 ρ(T (xo), T (a)) + ρ(T (a),xo) = ρ(xo,a) + ρ(T (a),xo) < 2ρo .

Suppose that there were infinitely many such elements T of G. Then the Bolzano – Weierstrass theorem
shows that we can find a sequence of distinct elements (Tn) with Tn(xo) converging to some point
y ∈ H3 as n →∞.

In particular, there is a natural number N with ρ(Tn(xo),y) < 1
2δ for n > N . Consequently the

elements Sn = T−1
N ◦ Tn of G satisfy

ρ(Sn(xo),xo) = ρ(Tn(xo), TN (xo)) < 1
2δ + 1

2δ = δ

for n > N . This means that there are infinitely many Sn ∈ G with ρ(Sn(xo),xo) < δ which contradicts
G acting discontinuously at xo. �

Suppose that F is a fundamental set for G acting on H3. Then the copies T (F ) for T ∈ G tessellate
all of H3. If a neighbourhood of xo meets only finitely many copies of F , then G acts discontinuously at
xo. This means it is often fairly straightforward to show that a group acts discontinuously by exhibiting
a suitable fundamental set.
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For example, we can construct a regular dodecahedron in H3 with each pentagonal face having each
angle a right-angle and with the angles between faces being right-angles. The copies of this dodecahedron
obtained by reflecting (inverting) in the faces tessellates all of H3. The group of Möbius transformations
that are symmetries of this tessellation clearly acts discontinuously on H3.

Dodecahedral tessellation of H3. (See http://www.geom.uiuc.edu/graphics/pix/Special Topics/ .)

We will now show that acting discontinuously on H3 is equivalent to being a discrete group of
Möbius transformations.

Theorem 18.4 Discrete if and only if acts discontinuously.
A group of Möbius transformations is discrete if and only if it acts discontinuously on H3.

Proof:
Suppose first that G is not discrete. Then there is a sequence (Tn) of non-identity transforma-

tions in G with Tn → I as n → ∞. This implies that Tn(xo) → xo for any point xo ∈ H3. So G does
not act discontinuously at xo.

Suppose now that G does not act discontinuously at some point xo ∈ H3. Then there is a δ > 0
with infinitely many T ∈ G satisfying ρ(xo, T (xo)) < δ. It is more convenient to work on the upper
half-space, so conjugate so that xo is mapped to k = (0, 0, 1) ∈ R3

+.

For each a ∈ R3
+ define Sa : x 7→ a3x + (a1, a2, 0). Then Sa(k) = a. (This corresponds to the

Möbius transformation on P given by z 7→ a3z + (a1 + ia2).) Use the Bolzano – Weierstrass theorem to
find a sequence of distinct transformations Tn ∈ G with Tn(k) → y as n →∞. Set

Sn = STn(k) and Rn = S−1
n ◦ Tn .
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(Note that Sn and Rn need not be in G.) Then we have Rn(k) = k so each Rn is in the group Stab(k).
This stabilizer is conjugate to the group SO(3), which is compact. Hence we can find a subsequence
Rn′ which converges to a transformation R∞ as n′ →∞.

Now we have Tn(k) → y, so Sn → Sy as n →∞. Hence, on the subsequence, we have

Tn′ = Sn′ ◦Rn′ → Sy ◦R∞ as n →∞ .

This shows that G is not discrete. �

We can also consider groups acting discontinuously on other spaces and prove similar results.

Look at: http://www.plunk.org/∼hatch/HyperbolicApplet/ .
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19 LIMITS OF ORBITS

Let G be a Kleinian group acting on the ball B3 and choose a point xo ∈ B3. Then we have shown
that G acts discontinuously on H3 = B3. So only finitely many points of the orbit G(xo) lie within
any hyperbolic ball. This implies that ||T (xo)|| tends to 1 as T runs through G. We can think of the
points G(xo) as lying inside the space R3 with the Euclidean metric (or, better still, inside R3

∞ with
the chordal metric) and consider the limit points of the orbit.

Recall that a limit point of a set Ω ⊂ R3 is a point u for which there is a sequence (wn) of distinct
points wn ∈ Ω which converge to u, so ||wn − u|| → 0 as n → ∞. The set of limit points of the orbit
G(xo) is called the limit set of G and will be denoted by Λ(xo). We will see shortly that this limit set
is independent of the point xo we choose.

Note that when we talk about limit points of the orbit we are using the Euclidean (or, chordal)
metric. The hyperbolic metric is not defined on the boundary so it does not make sense to ask for limit
points in the hyperbolic metric.

Proposition 19.1 The limit set is closed and G-invariant.
For any Kleinian group acting on B3 the limit set Λ(xo) is a closed, G-invariant subset of ∂H3 = S2.

Proof:
Λ(xo) is obviously closed since it is G(xo) \B3. Since the orbit Ω = G(xo) satisfies T (Ω) = Ω

for each T ∈ G, and T is continuous on all of R3
∞, we see that T (Λ(xo)) = Λ(xo). So the limit set is

G-invariant. �

Suppose that T is a loxodromic or hyperbolic transformation in the group G. Then Tn(xo) tends
to one of the fixed points of T as n →∞ and T−n(xo) tends to the other. Hence, both the fixed points
of T are in the limit set for G. Similarly the fixed point of a parabolic transformation is in the limit set.
However the fixed points of an elliptic transformation need not lie in the limit set.

Exercise:
25. Give an example of an elliptic element of a Kleinian group with fixed points that do not lie in the

limit set. Give an example of a Kleinian group for which the limit set is empty.
26. Let G be a Kleinian group with an invariant disc ∆ ⊂ P. Show that the limit set of G is a subset

of ∂∆.

We will now show that Λ(xo) is independent of the point xo. For suppose that x1 is another
point of B3. Then ρ(xo,x1) is finite. Each T ∈ G is an isometry for the hyperbolic metric, so
ρ(T (xo), T (x1)) = ρ(xo,x1). Although these points Tn(xo), and Tn(x1) stay the same hyperbolic
distance apart they get closer together for the Euclidean metric as the points get closer to the boundary.
Hence Tn(xo) and Tn(x1) will converge to the same point of ∂B3.

Lemma 19.2
Let (xn) and (yn) be two sequences of points in B3 with ρ(xn,yn) 6 K for each n ∈ N. If the sequence
of points (xn) in B3 converges in the Euclidean metric to a limit point u ∈ ∂B3, then the sequence
(yn) will also converge to u for the Euclidean metric.

Proof:
The hyperbolic density at a point x is

λ(x) =
2

1− ||x||2
= 2 cosh2 1

2ρ(0,x) .

So, for any given ε > 0, we can find ρo with

λ(x) >
1
ε

for ρ(0,x) > ρo −K .
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Suppose that γ is a hyperbolic geodesic joining the points a, b. Then

ρ(a, b) = L(γ) =
∫
γ

λ(x) ||dx|| > inf {λ(x) : x ∈ γ} ||b− a|| .

Hence, if ρ(a, b) 6 K and ρ(0,a) > ρo, then

K > ρ(a, b) >
1
ε
||b− a|| .

Applying this to the pairs of points xn,yn gives the result. �

Proposition 19.3 Limit set is independent of the base point.
The limit sets Λ(xo) and Λ(x1) are equal for any Kleinian group G and any points xo,x1 ∈ B3.

Proof:
A point u is in Λ(xo) if there is a sequence (Tn) in G with ||Tn(xo)−u|| → 0 as N →∞. Now

each Tn acts isometrically on B3, so

ρ(Tn(xo), Tn(x1)) = ρ(xo,x1) .

The lemma shows that ||Tn(x1)− u|| → 0 as N →∞. So u ∈ Λ(x1). �

We already know that every fixed point of a hyperbolic or loxodromic transformation does lie in the
limit set. For almost all Kleinian groups the fixed points of loxodromic and hyperbolic transformations
are dense in the limit set. The exceptional groups are ones with very simple structure. They are called
elementary groups and we will not be concerned with them.

Exercise:

27. Let G be the group generated by the single parabolic transformation P : z 7→ z + 1. Show that the
limit set is {∞} but that there are no hyperbolic or loxodromic transformations in G.

Lemma 19.4
Let α be a hyperbolic geodesic that passes through a point c ∈ B3. At least one of the endpoints u of
α satisfies

||u− c|| 6 1− ||c||2√
2||c||

=
√

2
sinh ρ(0, c)

.

Proof:
Draw the Euclidean sphere π that passes through c, is orthogonal to ∂B3 and crosses the radius

from 0 to c normally. This Euclidean sphere has radius r and centre k. It meets B3 in a hyperbolic
plane.

Since π cuts the unit sphere orthogonally, we must have

||k||2 = (||c||+ r)2 = 12 + r2 .

So

r =
1− ||c||2

2||c||
.

Any hyperbolic geodesic through c goes inside π in one direction, so one endpoint will lie within the
sphere π. This endpoint u satisfies

||u− c|| 6
√

2r .
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Proposition 19.5
Let G be a Kleinian group that contains a hyperbolic or loxodromic transformation. Then the fixed
points of all the hyperbolic and loxodromic transformations in G are dense in the limit set for G.

Proof:
Let A be the hyperbolic or loxodromic transformation in G. Let α be its axis joining the two

fixed points a+,a−. We know that both these fixed points lie in the limit set. Choose a point xo ∈ B3

that lies on the axis α. Then Proposition 19.3 shows that it suffices to prove that the fixed points are
dense in Λ(xo).

Let u ∈ Λ(xo). Then there is a sequence (Tn) in G with ||Tn(xo) − u|| → 0 as n → ∞. Now the
conjugate Tn ◦ A ◦ T−1

n is hyperbolic or loxodromic and has axis Tn(α) which passes through Tn(xo).
The lemma shows that one of the endpoints Tn(a+) or Tn(a−) satisfies

||Tn(a±)− u|| 6
√

2
sinh ρ(0, Tn(xo))

.

As n →∞, so ρ(0, Tn(xo)) →∞. Hence, some sequence of endpoints Tn(a±) converges to u. �

Recall that a subset Q of a metric space is perfect if no point of Q is isolated.

Corollary 19.6 Limit sets are perfect.
The limit set of a Kleinian group G that contains a hyperbolic or loxodromic transformation is either
finite or perfect.

Proof:
Suppose that the limit set is not finite. Let A be a hyperbolic or loxodromic transformation

in G with axis α. For each point v ∈ ∂B3 = S2, except the endpoints of α, we know that An(v) tends
to one endpoint u+ of the axis α as n → +∞ and to the other u− as n → −∞.

Since the limit set is infinite, Lemma 19.4 shows that there is another fixed point v of a hyperbolic
or loxodromic transformation that is not fixed by A. Then An(v) → u± as n → ±∞. Hence both the
fixed points u± of A are not isolated in the limit set.
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Every point of the limit set is a limit of fixed points of hyperbolic or loxodromic transformations
in G, so no point in the limit set is isolated. �

Corollary 19.7 Limit sets are finite or uncountable.
The limit set of a Kleinian group G that contains a hyperbolic or loxodromic transformation is either
finite or uncountable.

Proof:
For the limit set Λ is a closed subset of the sphere S2, so it is compact. The previous proposition

shows that it is perfect. Now the result follows from Cantor’s theorem that a perfect, compact, metric
space is uncountable.

Suppose that Λ were countable and enumerate its points as (xn)n∈N. We will construct a decreasing
sequence of non-empty, perfect, closed subsets Kn of Λ with xn /∈ Kn. Then the intersection

⋂
Kn can

not be empty, since Λ is compact. However, it does not contain any of the points xn so it must be
empty.

Set K0 = Λ. Suppose that Kn has been defined and is a non-empty, perfect, closed subset of Λ. If
xn+1 /∈ Kn then take Kn+1 = Kn. Otherwise, xn+1 ∈ Kn. Since Kn is perfect, there must be another
point, say y, in Kn. Set Kn+1 to be the closure of

Kn ∩B(y, 1
2ρ(xn+1, y)) .

No point of this closure is isolated, so Kn+1 is a non-empty, perfect, closed set with xn+1 /∈ Kn+1 ⊂ Kn.
This completes the inductive construction. �
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20 HAUSDORFF DIMENSION

20.1 Cantor Sets

Define a sequence of sets Cn ⊂ [0, 1] as follows:

C0 = [0, 1]

C1 = [0, 1

3
] ∪ [ 2

3
, 1]

C2 = [0, 1

9
] ∪ [ 2

9
, 1

3
] ∪ [ 2

3
, 7

9
] ∪ [ 8

9
, 1]

C3 = [0, 1

27
] ∪ [ 2

27
, 1

9
] ∪ [ 2

9
, 7

27
] ∪ [ 8

27
, 1

3
] ∪ [ 2

3
, 19

27
] ∪ [ 20

27
, 7

9
] ∪ [ 8

9
, 25

27
] ∪ [ 26

27
, 1]

...
...

At each stage, Cn consists of 2n disjoint intervals each of length 3−n. Cn+1 is obtained from Cn by
removing the open middle third from each of these intervals. The Cantor set C is the intersection
C =

⋂
n∈N

Cn.

The Cantor set is clearly closed and bounded in R, so it is compact. It is non-empty, since the
endpoints of each component interval of Cn lie in C. More carefully, we can write any x ∈ [0, 1] in base
3 as

x = (0.x1x2x3 . . .)3 =
x1

3
+

x2

32
+

x3

33
+ . . .

where the digits x1, x2, x3, . . . are each 0 or 1 or 2. Then x ∈ Cn if and only if it can be written as

x =
x1

3
+

x2

32
+

x3

33
+ . . . with x1, x2, . . . , xn ∈ {0, 2} .

Note that this is true even for the endpoints of Cn . For example,

1
3 = (0.022222 . . .)3 and 2

3 = (0.200000 . . .)3 .

Consequently, the Cantor set consists of all x ∈ [0, 1] that can be written as

x =
∞∑
k=1

xk
3k

with each xk ∈ {0, 2} .

This shows that the Cantor set has the same cardinality as the unit interval, for the map

C → [0, 1] ;
∑ xk

3k
7→
∑ xk/2

2k

is a bijection. Hence the Cantor set is uncountable. It also shows that the map

φ : ZN
2 → C ; (yk) 7→

∑ 2yk
3k

is a bijection, so we can identify C with the infinite group ZN
2 .

Exercise:
28. Let y = (yk) and z = (zk) be sequences in ZN

2 . Show that

d(y,z) =
{

0 when y = z;
2−n when n = min{k : yk 6= zk}

is a metric on ZN
2 . Show that the map φ : ZN

2 → C defined above is a homeomorphism from ZN
2

with this metric.
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The Cantor set is easily seen to be perfect. This gives another proof that the set C is uncountable.

The sets Cn for N > 1 are disconnected, so the Cantor set is disconnected. Indeed, the Cantor set
is totally disconnected: the only connected subsets of C are the singletons. For suppose that x, y were
two different points of C. Then |x − y| > 3−n for some n ∈ N, so x and y are in different components
of Cn. Any non-empty, compact, metric space which is both perfect and totally disconnected is called
a Cantor set. All such sets are, in fact, homeomorphic to the Cantor set (but we will not prove this).

The most important property of the Cantor set is its self-similarity. The maps

s0 : C → C ;x 7→ 1
3x and s1 : C → C ;x 7→ 1

3x + 2
3

send C homeomorphically onto the subsets C ∩ [0, 1
3 ] and C ∩ [ 23 , 1]. Each of them is an contraction

with scale factor 1
3 .

Exercise:
29. How do these self-similarities act on ZN

2 ?

We can use these self-similarities to find the “dimension” of the Cantor set. For now we will do
this informally. Later we will define the Hausdorff dimension of a set and prove the results properly.
Consider a subset X of RN and let Vd(X) denote the d-dimensional volume of X. So V1(X) is the
length of X; V2(X) the area of X; V3(X) the volume of X. If X is a set of dimension k = 1, 2, 3, . . .,
then we expect that

Vd(X) =
{ 0 for k < d;
∞ for k > d.

If s is a contraction with scale factor λ then

Vd(s(X)) = λdVd(X) .

For the Cantor set C we know that C is the disjoint union of s0(C) and s1(C). Hence, we would
expect

Vd(C) = Vd(s0(C)) + Vd(s1(C))

=
(

1
3

)d Vd(C) +
(

1
3

)d Vd(C) = 2
(

1
3

)d Vd(C) .

So the d-dimensional measure can only be finite and non-zero when

1 = 2
(

1
3

)d
, that is d =

log 2
log 3

= 0.63093 . . . .

Hence the Cantor set has fractional dimension 0.63093 . . ..

20.2 Hausdorff Dimension

Let M be a metric space with metric d. We will be particularly interested in subsets of RN with
the Euclidean metric or RN∞ with the chordal metric, for example the Cantor set or limit sets of Kleinian
groups. The diameter of M is

diam(M) = sup{d(x, y) : x, y ∈ M} .

A collection {U1, U2, U3, . . .} of subsets of M is a δ-cover for M when M =
⋃
n∈N Un and each set

Un has diameter at most δ. We set

Hd
δ(M) = inf

{∑
n∈N

diam(Un)d : (Un)n∈N is a δ-cover for M

}
.
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As we decrease δ, so the class of allowed δ-covers is reduced. Hence, Hd
s(M) increases as δ ↘ 0. Now

we define the d-dimensional Hausdorff measure of M as:

Hd(M) = lim
δ→0

Hd
δ(M) = sup

{
Hd
δ(M) : δ > 0

}
.

This measures the d-dimensional size of the set M . It is usually either 0 or ∞. Indeed, we will show
that, for each set M , there is at most one dimension d for which Hd(M) is finite and non-zero.

Suppose that M is a metric space and 0 6 s < d. For each 0 < δ < 1 and any δ-cover (Un) of M
we have ∑

diam(Un)d 6 δd−s
∑

diam(Un)s .

So Hd
δ(M) 6 δd−sHs

δ(M). This shows that

if Hs(M) < ∞ then Hd(M) = 0 for s < d ;
if Hd(M) > 0 then Hs(M) = ∞ for s < d .

So there is a critical value at which the Hausdorff dimension Hs(M) jumps from ∞ to 0. This value is
called the Hausdorff dimension dimHM of M . Note that

Hs(M) =
{
∞ for s < dimHM ;
0 for s > dimHM .

but the Hausdorff measure at the critical value dimHM may be any number between 0 and ∞ including
both endpoints. It is usually very hard to calculate the Hausdorff measure at this critical value and
only a little easier to find the Hausdorff dimension.

A map f : M → N between two metric spaces is K-Lipschitz if

d(f(x), f(y)) 6 Kd(x, y) for all x, y ∈ M .

Such a map is certainly uniformly continuous. A map f : M → N is Lipschitz if it is K-Lipschitz for
some finite K. A map f : M → N is bi-Lipschitz if it is Lipschitz and it has an inverse which is also
Lipschitz. Any map f : RN → RN that is differentiable with bounded derivative is certainly Lipschitz
by the mean value theorem. So, for example, every Möbius transformation is bi-Lipschitz.

Proposition 20.1
If f : M → N is a K-Lipschitz map, then

Hd(f(M)) 6 KdHd(M) .

Proof:
Suppose that (Un) is a δ-cover for M . Then each f(Un) has diameter at most Kdiam(Un), so

(f(Un)) is a Kδ-cover for f(M). Furthermore,∑
diam(f(Un))d 6 Kd

∑
diam(Un)d .

So, Hd
Kδ(f(M)) 6 KdHd

δ(M). Taking the limits as δ ↘ 0 gives the result. �

Corollary 20.2 Lipschitz maps preserve Hausdorff dimension
If f : M → N is a Lipschitz map, then

dimH f(M) 6 dimHM .
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Proof:
Suppose that f is K-Lipschitz. The Proposition shows that Hd(f(M)) 6 KdHd(M) for every

value of the dimension d. Hence dimH f(M) 6 dimHM . �

This Corollary shows that the Hausdorff dimension of a set is unchanged by bi-Lipschitz maps.
In particular, the Hausdorff dimension of the limit set Λ(G) of a Kleinian group G is unchanged by a
Möbius transformation. So Λ(TGT−1) and Λ(G) have the same Hausdorff dimension.

Exercise:

30. A map f : M → N is α-Hölder continuous if there is a constant C < ∞ with

d(f(x), f(y)) 6 Cd(x, y)α for all x, y ∈ M .

Show that, for such a map,

dimH f(M) 6
1
α

dimHM .

The Hausdorff measure Hd is an (outer) measure. We will not use measure theory but we will need
the following very simple consequences:

If M ⊂ N then Hd(M) 6 Hd(N).

If M is the disjoint union of two subsets M1,M2, then Hd(M) = Hd(M1) +Hd(M2).

We are now in a position to prove properly that the Cantor set C has Hausdorff dimension
log 2/ log 3. Let C0 = C ∩ [0, 1

3 ] and C1 = C ∩ [ 23 , 1]. The contraction maps

s0 : C → C0 ;x 7→ 1
3x and s1 : C → C1 ;x 7→ 1

3x + 2
3

are each Lipschitz maps with Lipschitz constant 1
3 . Their inverses are also Lipschitz with constants 3.

So
Hd(C0) = Hd(C1) =

(
1
3

)dHd(C) .

This shows that
Hd(C) = Hd(C0) +Hd(C1) = 2

(
1
3

)dHd(C)

for every dimension d. If, for some value d, we have 0 < Hd(C) < ∞ then we see that 2
(

1
3

)d = 1 and
so the Hausdorff dimension d must satisfy

2
(

1
3

)d = 1 that is d =
log 2
log 3

.

However, we need to show that for this dimension we do indeed have 0 < Hd(C) < ∞.

First observe that the set Ck consists of 2k intervals each of length 3−k. These intervals form a
δ-cover of C for δ = 3−k. So

Hd
δ(C) 6 2k(3−k)d = (2× 3−d)k = 1

because d = log 3/ log 2. Letting k ↗∞ this gives Hd(C) 6 1.

For the converse, suppose that (Un) is a δ-cover of C. We will show that∑
diam(Un)d > 1

2 .

This will prove that Hd(C) > 1
2 as required.
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First observe that, by expanding the sets Un by a small amount, we can ensure that they are open.
Since C is compact, there is then a finite subcover. So we can assume that (Un) is a finite collection of
open sets that cover C. Choose an integer K so that each Un has diameter greater than 3−K . Suppose
that Un is one of these sets, with

3−k−1 6 diam(Un) < 3−k

for some natural number k < K. Now any two components of Ck are distance at least 3−k apart, so
Un can not meet more than one of them. Let Vn be this component. It has length 3−k, so diam(Un) >
1
3diam(Vn). Then (Vn) is a cover for C and

∑
diam(Un)d >

∑(
1
3diam(Vn)

)d =
1
3d
∑

diam(Vn)d =
1
2

∑
diam(Vn)d .

Hence it will suffice to prove that ∑
diam(Vn)d > 1

for a finite cover of C by the intervals Vn.

Now consider one of the intervals Vn. The intersection CK ∩ Vn consists of 2K−k intervals each of
length 3−K , which we will denote by (Wj)2

K−k

j=1 . Then

diam(Vn)d = (3−k)d = 2−k and
2K−k∑
j=1

diam(Wj)d = 2K−k(3−K)d = 2−k(2× 3−d)K = 2−k

are equal. So it suffices to prove that ∑
diam(Wj)d > 1

when (Wj) is a cover of C by the component intervals of CK . Since these are a cover, all 2K intervals
must appear in the sum and the result is clear.
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21 CALCULATING THE HAUSDORFF DIMENSION

Proposition 21.1
If a metric space M has dimHM < 1, then M is totally disconnected.

Proof:
Consider first a subset X of R with dimHX < 1. Any non-empty open interval U has H1(U) =

1, so X can not contain any such interval. This means that between any two points x, y ∈ X there is a
point c /∈ X.

Now suppose that x, y are two distinct points of the metric space M . Then

f : M → R ; z 7→ d(x, z)

is 1-Lipschitz, so Corollary 20.2 shows that dimH f(M) < 1. Hence there is a c /∈ f(M) with 0 =
f(x) < c < f(y). The sets f−1(−∞, c) and f−1(c,∞) are then disjoint open sets containing x and y
respectively with union M . �

The converse fails as the example of Cantor dust shows. We construct Cantor dust as follows:

D0 = [0, 1]× [0, 1] ⊂ R2;

If Dn has been defined and consists of a finite number of disjoint closed squares, then Dn+1 is
obtained by dividing each square into 16 smaller squares and keeping only the 4 shown in the
diagram below.

Cantor dust is the intersection
⋂

Dn.

D0 D1 D2 D3 D4

Each Dn consists of 4n squares with side length 4−k and hence diameter 4−k
√

2. Covering D by these
squares shows that

H1(D) 6
√

2 .

The projection π1 onto the first co-ordinate is a 1-Lipschitz map, with π1(D) = [0, 1], so

H1(D) > H1([0, 1]) = 1 .

Therefore we see that D has Hausdorff dimension 1. However, it is clear that D is totally disconnected.

21.1 Invariant Sets

Let M be a metric space and K(M) the collection of non-empty, compact subsets of M . If K is
one of these compact sets then

Kδ =
⋃
{B(x, δ) : x ∈ K}

is an open set containing K for each δ > 0. It is called the δ-neighbourhood of K. The Hausdorff
distance D on K(M) is

D(K, L) = inf{δ > 0 : K ⊂ Lδ and L ⊂ Kδ} .

Lemma 21.2 Hausdorff distance
The Hausdorff distance D is a metric on K(M).
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Proof:
Let K, L ∈ K(M). Choose a point x ∈ L. The compact set K is bounded, so there is some

δ > 0 with K ⊂ B(x, δ) ⊂ Lδ. A similar argument with K and L interchanged shows that the Hausdorff
distance D(K, L) is finite.

If D(K, L) = 0, then K ⊂
⋂
{Lδ : δ > 0} = L and L ⊂ K, so K = L.

It is clear that D(K, L) = D(L,K).

For a third set M ∈ K(M) suppose that M ⊂ Lε and L ⊂ Kδ. Then

M ⊂ Lε ⊂ (Kδ)ε ⊂ Kδ+ε .

So we see that M ⊂ KD(M,L)+D(L,K). Hence we obtain the triangle inequality:

D(M,K) 6 D(M,L) + D(L,K) .

�

A contraction on the metric space M is a map C : M → M for which there is a constant c with
0 6 c < 1 and

d(C(x), C(y)) 6 c d(x, y) for all x, y ∈ M .

The contraction mapping theorem shows that such a map has a unique fixed point in M , provided that
M is complete.

Let C1, C2, . . . , CN be a finite collection of contractions with constants c1, c2, . . . , cN respectively.
A subset F of M is an invariant set for C1, C2, . . . , CN when

F =
N⋃
n=1

Cn(F ) .

Proposition 21.3 Invariant sets
A finite set C1, C2, . . . , CN of contractions on the Euclidean space EM have a non-empty, compact,
invariant set. There is only one such non-empty, compact, invariant set.

Proof:

For each compact subset K ∈ K(M) define C(K) =
N⋃
n=1

Cn(K). Each map Cn is continuous,

so Cn(K) is compact and hence C(K) ∈ K(M). We are looking for a set F with C(F ) = F .

For two sets K, L ∈ K(M) with K ⊂ Lδ we have Cn(K) ⊂ Cn(Lδ) ⊂ Cn(L)cnδ. Hence,

C(K) ⊂ C(L)cδ where c = max{c1, c2, . . . , cN} .

This implies that
D(C(K), C(L)) 6 cD(K, L) .

Hence C is a contraction.

If K and L were both non-empty, compact, invariant sets, then D(C(K), C(L)) 6 cD(K, L), so
K = L. It remains to show that there is at least one invariant set.

Consider the closed ball Q = B(0, R). Its image under C lies within a distance max{d(0, Cn(0))}+
cR of the origin. Hence, if we choose R large enough we will have C(Q) ⊂ Q. This implies that

Q ⊃ C(Q) ⊃ C2(Q) ⊃ C3(Q) ⊃ C4(Q) ⊃ . . . .
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The intersection F =
⋂
Cn(Q) is therefore a non-empty compact set. It is clear that C(F ) = F , so F is

invariant. �

For a contraction mapping C : M → M we know that the sequence x,C(x), C2(x), C3(x), . . .
converges to the fixed point. Hence the proof above show that the sets

K, C(K), C2(K), C3(K), . . .

converge to the invariant set in the Hausdorff metric for any starting set K ∈ K(M). If we choose K as
a compact set with C(K) ⊂ K, then

K ⊃ C(K) ⊃ C2(K) ⊃ C3(K) ⊃ . . .

and the intersection
⋂
Cn(K) is the invariant set.

Exercise:

31. What is the unique non-empty, compact, invariant set for a single contraction C : M → M?
Let C0, C1 be the contractions on R given by

C0 : x 7→ 1
3x and C1 : x 7→ 1

3x + 2
3 .

Find the unique non-empty, compact, invariant set for C0, C1. Show that there are other non-empty
invariant sets.

We can also use the argument in the last proposition to give an upper bound on the Hausdorff
dimension of the invariant set.

Proposition 21.4
Let C1, C2, . . . , CN be contractions for the Euclidean metric on EM with F as the non-empty, compact,
invariant set. Let cn < 1 be constants with

d(Cn(x), Cn(y)) 6 cnd(x, y) for all x, y ∈ EM .

Then dimH F 6 d where d is the unique solution to the equation

N∑
n=1

cdn = 1 .

Proof:
First note that the function f : s →

∑
csn is strictly decreasing, so there is a unique positive

number d with
∑N
n=1 cdn = 1.

The set F is bounded and so of finite diameter. Fix a natural number K and consider sequences
n = (n(1), n(2), . . . , n(K)) of K integers with 1 6 n(k) 6 N . For any such sequence n define a set
Cn(F ) as

Cn(F ) := Cn(1) ◦ Cn(2) ◦ . . . ◦ Cn(K)(F ) .

This has diameter at most cn(1)cn(2) . . . cn(K)diam(F ). If c = max{cn : n = 1, 2, . . . , N} < 1 then this
diameter is at most cKdiam(F ).

Since F is invariant, we have
F =

⋃
n

Cn(F )
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where the union is over all sequences of K integers. Hence the sets Cn(F ) form a δ-cover for F provided
that cKdiam(F ) 6 δ. For this cover we have∑

n

diam(Cn(F ))d 6
∑
n

(cn(1)cn(2) . . . cn(K)diam(F ))d = diam(F )d .

The last equality follows from the choice of d to satisfy
∑

cdn = 1. So Hd
δ(F ) 6 diam(F )d for every

δ > 0. Consequently, Hd(F ) 6 diam(F )d and the Hausdorff dimension of F is at most d. �

The proof above should be compared with the proof that the Hausdorff d-measure of the Cantor
set is finite when d = log 2/ log 3. The other part of the proof, showing that the Hausdorff d-measure
is larger than 0, can also be generalised, although we need stronger restrictions on the contractions and
the metric space M . The Theorem below gives a useful result in this direction. We will not prove it
since it would involve a little probability.

A map C : M → M is a similarity with scale factor c ∈ [0, 1) if

d(C(x), C(y)) = c d(x, y) for all x, y ∈ M .

Such a similarity is certainly a contraction map.

Theorem 21.5
Let C1, C2, . . . , CN be similarities on the Euclidean space EM with scale factors c1, c2, . . . , cN . These
similarities have a unique non-empty, compact invariant set F . Let d be the unique number with∑

cdn = 1. Suppose that there is a bounded open set V with C1(V ), C2(V ), . . . , CN (V ) disjoint and⋃
Cn(V ) ⊂ V . Then the Hausdorff d-measure Hd(F ) is greater than 0 and so the Hausdorff dimension

of F is at least d.

Combining this with the previous Proposition shows that the Hausdorff dimension is exactly d and that
0 < Hd(F ) < ∞.

For a proof of this result, which is not examinable, see “Fractal Geometry”, by K. Falconer, pp,
119-120. �

V

C1(V )

C2(V )
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22 EXAMPLES OF HAUSDORFF DIMENSION

We can now determine the Hausdorff dimension of many self-similar sets.

22.1 The Cantor Set

The two similarities

C0 : R → R ; x 7→ 1
3x and C1 : R → R ; x 7→ 1

3x + 2
3

have the Cantor set as an invariant set. For we see that

C([0, 1]) = C1 = [0, 1
3 ] ∪ [ 23 , 1]

C2([0, 1]) = C2

C3([0, 1]) = C3 etc.

and the invariant set is the limit of this sequence. We can take the open interval (0, 1) as the set V in
Theorem 21.5 . Hence the dimension d of the Cantor set is the unique solution of

∑
cdn = 1. This is

2× ( 1
3 )d = 1, so d = log 2/ log 3.
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22.2 The von Koch snowflake

This is the curve constructed by an iterative process starting from the unit interval [0, 1] ⊂ R2. At
each stage, each straight line segment is replaced by 4 line segments each 1

3 as long, as in the diagram.
For this we have 4 similarities each with scale factor 1

3 . We can take the open isosceles triangle with
base (0, 1) and height 1

2

√
3 as the set V . Then 4( 1

3 )d = 1, so the Hausdorff dimension of the von Koch
snowflake is log 4/ log 3.

V

The von Koch snowflake Images of V .
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Three copies of the von Koch curve making a snowflake.
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22.3 The Sierpiński Gasket
This is the set constructed as follows. We begin with a filled

in equilateral triangle. At each stage we replace each equilateral
triangle by 3 triangles each 1

3 the size. So we have 3 similarities
each with scale factor 1

2 . We can take the interior of the initial
triangle as the set V . Then 3( 1

2 )d = 1, so the Hausdorff dimension
of Sierpiński’s gasket is log 3/ log 2.
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23 SCHOTTKY GROUPS

23.1 Fuchsian Groups

We begin with the following simple exercise.

Proposition 23.1
Let γ−, γ+ be two hyperbolic geodesics in D that do not meet either in D or on its boundary. These
bound two disjoint half-planes δ−, δ+. There is a Möbius transformation T that maps γ− onto γ+ and
δ− onto D \ δ+.

Proof:
There is a hyperbolic geodesic ν normal to both γ− and γ+. This has endpoints w−, w+ where

we may assume that w− is in the boundary of δ− and w+ in the boundary of δ+. Conjugate by a Möbius
transformation A chosen to map D onto R2

+, w− to 0 and w+ to ∞. Then ν is mapped to the imaginary
axis. So the geodesics A(γ±) must be half-circles perpendicular to this: A(γ±) = {z ∈ R2

∞ : |z| = R±}.
Now the map

U : z 7→
(

R+

R−

)
z

is a hyperbolic Möbius transformation that maps A(γ−) onto A(γ+). So we may take T = A−1 ◦U ◦A.
�

δ−

δ+

γ− γ+
φ

T

φ

γ− = γ+

D/G

The region f = D \ (δ− ∪ δ+) between γ− and γ+ is a fundamental set for the group G generated
by the single Möbius transformation T . The quotient D/G is obtained by identifying the two sides γ−

and γ+ of f to get an annulus (ring) as shown above.

We can also think of D as a subset of the Riemann sphere P. The geodesics γ± are parts of
circles Γ± orthogonal to the unit circle ∂D. These circles enclose two disjoint discs ∆±. The Möbius
transformation T acts on all of the Riemann sphere and maps ∆− onto P \ ∆+. Let G be the group
generated by T . Then the limit set Λ(G) consists of just the two fixed points of T . The group G acts
discontinuously on all of the remainder of P and the set Φ = P \ (∆− ∪∆+) is a fundamental set. The
quotient (P \ Λ(G))/G is obtained from Φ by identifying the two circles Γ− and Γ+ to obtain a torus.
We will sometimes abuse the notation by writing (P \ Λ(G))/G as P/G.
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∆
−

∆
+

Γ
−

Γ
+

Φ

T

Γ− = Γ+

(P \ Λ(G))/G

Note that inversion J in the unit circle ∂D maps D to the complementary disc J(D) and sends Φ
to itself with the part φ inside D going to the part J(φ) outside D. The torus (P \Λ(G))/G is obtained
by taking the two annuli D/G and J(D)/G and joining them along their boundaries.

We can also think of the Möbius transformation acting on hyperbolic 3-space H3. The circles Γ±

are the boundaries of hyperbolic planes G± in B3 = H3. These bound disjoint half-spaces H±. The
Möbius transformation T maps D− onto H3 \ D+. The set F = H3 \ (D− ∪ D+) is a fundamental set
for G. The quotient H3/G is obtained from F by identifying the two planes G− and G+ to get a solid
torus. Then (P \ Λ(G))/G is the boundary of H3/G.

We can do the same for Fuchsian groups G generated by more than one element. The group G
of Möbius transformations acts on D and we obtain a surface D/G for the quotient. This surface is
orientable since each Möbius transformation is orientation preserving. Similarly, G acts on J(D) = P\D.
The quotient J(D)/G is another surface, called the dual of D/G. The inversion J in ∂D induces an
orientation reversing bijection from D/G to J(D)/G.

When we think of G acting on all of the Riemann sphere we get a quotient (P\Λ(G))/G that consists
of D/G and J(D)/G joined together along their boundaries. Similarly, when we think of G acting on H3

we get a quotient H3/G which is a 3-dimensional solid that has (P \ Λ(G))/G as its boundary. (Recall
that we have seen examples of Fuchsian groups which have all of the unit circle in the limit set Λ(G).
In this case, the two parts D/G and J(D)/G are separated by the quotient of the limit set.)
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23.2 Schottky Groups

In the previous section all of our circles were orthogonal to the unit circle. In this section we do not
insist on this and produce Kleinian groups rather than Fuchsian groups. These are the Schottky groups.
As in the last section, we will begin by considering groups generated by a single Möbius transformation.

Proposition 23.2
Let Γ−,Γ+ be two disjoint circles bounding two disjoint discs ∆−,∆+ in P. Then there is a Möbius
transformation T that maps Γ− onto Γ+ and ∆− onto P \∆+.

Proof:
We could prove this by adapting the proof of Proposition 23.1 for hyperbolic 3-space. However,

for variety, we will give a different argument that works entirely on the Riemann sphere.

Let J± be inversion in the circle Γ±. Then S = J+ ◦ J− is a non-identity Möbius transformation.
Let zo be one fixed point. Then J+(J−(zo)) = S(zo) = zo so J−(zo) = J+(zo). Also,

S(J−(zo)) = J+ ◦ J− ◦ J−(zo) = J+(zo) = J−(zo)

so J−(zo) is also fixed by S. Since Γ− and Γ+ are disjoint, the points zo and J−(zo) must be distinct.
So S has 2 fixed points. Note that J− and J+ both interchange these two fixed points.

Conjugate by a Möbius transformation A that sends zo to 0 and J−(zo) to ∞. Then A◦J± ◦A−1 is
inversion in the circle A(Γ±) and must interchange 0 and∞. So A(Γ±) must be a circle {z ∈ P : |z| = r±}
for some 0 < r± < ∞. Consequently the map

U : z 7→ eiθ
(

r+

r−

)
z

maps A(Γ−) onto A(Γ+). (It is hyperbolic if eiθ = 1 and loxodromic otherwise.) The map T = A◦U◦A−1

now has the required properties. �

Let Γ−,Γ+,∆−,∆+ and T be as in the proposition. The group G generated by T has a limit set
Λ(G) consisting of the two fixed points of T . The set Φ = P \ (∆− ∪∆+) is a fundamental set for the
group G acting on P \ Λ(G). The quotient P/G (or, more accurately, (P \ Λ(G))/G) is obtained from
this fundamental set by identifying the two circles Γ− and Γ+. So the quotient is a torus (the surface
of a ring doughnut).

We can also think of the Möbius transformation acting on hyperbolic 3-space H3. The circles Γ±

are the boundaries of hyperbolic planes G± in B3 = H3. These bound disjoint half-spaces D±. The
Möbius transformation T maps D− onto H3 \ D+. The set F = H3 \ (D− ∪ D+) is a fundamental set
for G. The quotient H3/G is obtained from F by identifying the two planes G− and G+ to get a solid
torus (the body of a ring doughnut). Then P/G is the boundary of H3/G.

The special case when the circles Γn are orthogonal to the unit circle was the Fuchsian case dealt
with in the previous section.

We can do the same when we have more than one pair of circles. In this case we get a Schottky group
generated by several Möbius transformations. For k = 1, 2, . . . ,K, let Γ−k and Γ+

k be disjoint circles
bounding 2K disjoint discs ∆−

k and ∆+
k . The proposition shows that there are Möbius transformations

Tk that map Γ−k onto Γ+
k and ∆−

k onto P \∆+
k . The group G generated by T1, T2, . . . , TK is called the

(classical) Schottky group for the discs. We have already considered the Schottky groups for K = 1 but
Schottky groups with more than one generator are more interesting.

Let Φ be the set

Φ = P \

(
K⋃
k=1

∆−
k ∪∆+

k

)
.
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This is the region outside all of the discs ∆±
k except that we have included half of the bounding circles.

We will show that Φ is a fundamental set for the Schottky group G acting on P \ Λ(G).

The image Tk(Φ) lies inside ∆+
k and is bounded by the 2K circles Tk(Γ±j ). One of these is Tk(Γ−k ) =

Γ+
k but all of the others are strictly inside ∆+

k . Now apply another one of the generators, say Tj . The
image Tj(Tk(Φ)) is a subset of Tj(∆+

k ), which is itself a disc inside ∆+
j . Hence we get a pattern of

nested discs as shown below.

Φ

T1

T2

T1(Φ)

T
−1

1
(Φ)

T2(Φ)T
−1

2
(Φ)

The Tessellation for the Schottky Group.

We will see shortly that the intersection of any chain of nested discs is a point and the closure of
these points is the limit set Λ(G). The remainder of the Riemann sphere: P \ Λ(G), is tessellated by
the images g(Φ) for g ∈ G. These are clearly locally finite so we see that G acts discontinuously on
P \ Λ(G).
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T1(Φ)

T1T2(Φ)

T1T
−1

2
(Φ)

T
2

1
(Φ)

Enlargement of the region ∆+
1 .

Theorem 23.3 Schottky groups are free groups.
The Schottky group generated by the Möbius transformations pairing discs ∆−

k and ∆+
k for k =

1, 2, 3 . . . , K with the closure of all these 2K discs disjoint, is a free group on the generators (Tk)Kk=1.

Proof:
To see this we need to look more closely at the tessellation shown above. It is simplest to see

the structure of this tessellation if we simplify the diagram. So draw a graph — the Cayley graph for G
— by putting a vertex for each image g(Φ) and labelling it with the element g of G. Join the vertices
labelled g and g ◦ Tk for k = 1, 2, . . . ,K. We have done this below for the case of two pairs of discs and
coloured the edges from g to g ◦ T1 in blue and the edges from g to g ◦ T2 in red. Two vertices g and h
in this graph are adjacent when g = hA for A one of the generators Tk or their inverses T−1

k .
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I

T1

T2T
−1

2

T
−1

1

T
2

1
T1T2

T1T
−1

2

T2T1

T2T
−1

1
T

2

2T
−2

2
T
−1

2
T1

T
−1

2
T
−1

1

T
−1

1
T2

T
−1

1
T
−1

2
T
−2

1

The Cayley graph for a Schottky Group.

Consider a product
A1 ◦A2 ◦A3 ◦ . . . ◦AN

where N > 0 and each An is one of Tk or T−1
k . If two successive terms An, An+1 have An ◦ An+1 = I,

then we can cancel them and reduce the length N by 2. Repeat this until there are no such pairs. We
need to show that no such product is the identity I (except for the trivial product of no elements). In
the graph, the path

I, A1, A1 ◦A2, A1 ◦A2 ◦A3, . . . , A1 ◦A2 ◦A3 ◦ . . . ◦AN = g

follows edges from I to g and never turns back on itself. Since there are no loops in the graph, this
implies that the path can not return to its starting point. So g 6= I unless the product is trivial. Hence
G is a free group. �
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The quotient (P\Λ(G))/G is obtained from the fundamental set Φ by identifying the pairs of circles
∆−
k and ∆+

k for k = 1, 2, . . . ,K. This gives a sphere with K handles.

Γ
−

1 = Γ
+

1

Γ
−

2 = Γ
+

2

We can also think of the Schottky group acting on the hyperbolic 3-space H3. The circles Γ±k are
the boundaries of hyperbolic planes G±k in B3 = H3. These bound disjoint half-spaces D±k . The Möbius
transformations Tk maps D−k onto H3 \ D+

k . The set F = H3 \ (D− ∪ D+) is a fundamental set for G.
The quotient H3/G is obtained from F by identifying the two planes G−k and G+

k for k = 1, 2, . . . ,K.
This gives a solid ball with K handles. Then (P \ Λ(G))/G is the boundary of H3/G.

D
−

1 D
+

1

D
−

2
D

+

2

F

23.2 The Limit Set for a Schottky Group

The pictures above suggest that nested sequences of the discs obtained as images of the basic discs
∆±
k under the group G are single points and that these points are dense in the limit set. We will prove

this and also obtain a bound on the Hausdorff dimension of the limit set.

It is convenient to work in H3. The hyperbolic planes D−k and D+
k do not meet either in H3 nor on

its boundary, so they are all at least a non-zero hyperbolic distance t apart. This means that any curve
in the fundamental set F that joins one of these planes to another must have length at least t.
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We can write any g ∈ G as a product

g = A1 ◦A2 ◦ . . . ◦AN

where N > 0, each An is one of Tk or T−1
k and An ◦An+1 6= I for n = 1, 2, . . . , N − 1. Since G is a free

group, the length N of such a product is determined by g. We will call it the length of g. There is 1
element of length 0, 2K of length 1, and 2K(2K − 1)N−1 of length N .

Choose a base point in F , say the origin 0. Let γ be the shortest hyperbolic path from this base
point to the set g(F). This path begins in F , then crosses into A1(F), then A1 ◦A2(F) and so on until
it crosses into A1 ◦ A2 ◦ . . . ◦ AN−1(F) and finally meets g(F). This means that it must cross each of
the regions A1(F), A1 ◦A2(F), . . . , A1 ◦A2 ◦ . . . ◦AN (F) from one of the bounding planes to another.
Hence the hyperbolic length of γ must be at least Nt.

Lemma 23.4
Let D be a hyperbolic plane at a hyperbolic distance ρ from the origin in B3 = H3. Then the Euclidean
diameter of D is at most 2/ sinh ρ.

This is essentially the same result as Lemma 19.4 . The inequality is only useful when ρ is large. For
small ρ the observation that diam(D) 6 2 is better.

Proof:
The hyperbolic plane D is part of a Euclidean sphere with centre k and Euclidean radius r.

The shortest path from the origin to D is a radial line from 0 to k that crosses the plane D at a point
c with ||c|| = tanh 1

2ρ. Since D is orthogonal to the unit sphere, Pythagoras’ Theorem shows that

1 + r2 = ||k||2 = (||c||+ r)2 .

So

r =
1− ||c||2

2||c||
=

1− tanh2 1
2ρ

2 tanh 1
2ρ

=
1

sinh ρ
.

k0

D

c

1 r

The Euclidean diameter of D is at most 2r. �

It follows from this lemma that an element g of length N in G has g(F) at a hyperbolic distance
ρ > Nt from 0 and hence the Euclidean diameter of g(F) is at most 2/sinhNt. When we look at this
on the Riemann sphere it shows that diam(g(Φ)) 6 2/ sinhNt.
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Consider the tessellation given by the images g(Φ) for g in the Schottky group G. We wish to study
a chain of these images gn(Φ) where every successive pair gn(Φ) and gn+1(Φ) meet along a circle. Now
the fundamental domain Φ only meets the images A(Φ) where A is one of Tk or T−1

k . Hence gn(Φ) and
gn+1(Φ) only meet when gn+1 = gn ◦An where An ∈ {Tk, T−1

k : k = 1, 2, . . . ,K}. Thus we have

gn = A1 ◦A2 ◦ . . . ◦An .

Note that we can not have An ◦An+1 = I or else gn−1 = gn+1 and the two images gn−1(Φ) and gn+1(Φ)
are the same. The images gn(Φ) touch each other along a sequence of circles that are nested inside one
another. (Look at the diagram of the Tessellation for the Schottky Group.) We can use the previous
lemma to estimate the size of these circles as

diam(gn(Φ)) 6
2

sinhnt
.

This certainly shows that their Euclidean diameter tends to 0 as n →∞.

We can also use this idea to find an upper estimate for the Hausdorff dimension of the limit set Λ(G).
Suppose that Cn is the circle separating gn(Φ) from gn+1(Φ). Then Cn surrounds a disc containing all
of the images gm(Φ) for m > n. Hence this disc must contain a limit point of G. So every sequence
(gn) as above gives us a point of the limit set. However, no point of any of the images g(Φ) can be in
the limit set since there are only finitely many copies h(Φ) for h ∈ G that border it. Therefore the limit
set is the complement of all these images g(Φ).

For any natural number N , the complement of the union:⋃
{g(Φ) : g ∈ G has length at most N}

certainly contains the limit set. Our argument shows that the complement consists of 2K(2K − 1)N−1

discs each with Euclidean diameter at most 2
sinhNt . So the Hausdorff d-dimensional measure of Λ(G) is

at most

Hd
δ(Λ(G)) 6 2K(2K − 1)N−1

(
2

sinhNt

)d
for δ > 2

sinhNt . When N is large this is approximately

2K(2K − 1)N−1
(
4e−Nt

)d
=

2K × 4d

2K − 1
(
(2K − 1)e−td

)N
.

So we see that the d-dimensional Hausdorff measure is 0 for

d >
log(2K − 1)

t
.

This proves that the Hausdorff dimension of the limit set is at most

log(2K − 1)
t

.

(Much more delicate arguments show that the Hausdorff dimension of the limit set is actually equal to
the infimum of those d for which the series

∑
g∈G

exp(−dρ(0, g(0))) converges.)
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24 DEGENERATE SCHOTTKY GROUPS

24.1 How Schottky Groups Degenerate

So far we have insisted that the discs ∆±
k for our Schottky groups are disjoint. It is interesting to

ask what happens as they move closer to one another and, eventually touch or cross. There are still
Möbius transformations that pair the circles Γ±k . However, the group generated by them need not be
discrete. For example, if the circles crossed and the map Tk were elliptic, then G could only be discrete
if Tk were of finite order.

Consider the Schottky group for the disjoint discs (∆±
k )Kk=1. Take one pair, say ∆−

1 and ∆+
1 , and

allow them to move closer. This means that the generator T1 also varies. In the picture below the
shortest (chordal) path between the two discs is marked in green. As the discs move closer together, so
this green curve becomes shorter. Ultimately, the green curve reduce to a point and the two discs ∆−

1

and ∆+
1 touch at a point P . In the quotient, the point P corresponds to a singular point of the surface.

∆
−

1 ∆
+

1

∆
−

2 ∆
+

2

Γ
−

1 = Γ
+

1

Γ
−

2 = Γ
+

2

∆
−

1 ∆
+

1

∆
−

2∆
+

2

P

Γ
−

1 = Γ
+

1

Γ
−

2 = Γ
+

2
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The transformation T1 also changes as we vary the discs. The most interesting case is when, in the
limit, T1 becomes a parabolic transformation that fixes P . Then we get a tessellation as shown below.
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We can also let other pairs of circles touch. Let us consider the case where we have 2 pairs of circles
Γ±1 and Γ±2 as shown below. We will also assume that the transformations T1, T2 are parabolic with

T1 : A 7→ A ; T2 : C 7→ C ;
T1 : B 7→ D ; T2 : B 7→ D .

The fundamental set then breaks into two parts, both quadrilaterals bounded by arcs of each of the
four circles. When we identify the edges using T1 and T2, each of these quadrilaterals becomes a sphere
with 3 punctures.

A

B

C

D

The limit set in this case is a closed Jordan curve contained in the chains of circles shown below.

Exercise:

32. Show that, in the special case where the 4 points A,B, C, D lie on a circle that crosses the 4 circles
Γ±k orthogonally, the group is a Fuchsian group.
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A special case of this is when our discs are:

∆−
1 = {z ∈ C∞ : Re(z) < −1} ∆+

1 = {z ∈ C∞ : Re(z) > 1}
∆−

2 = {z ∈ C∞ : |z + 1
2 | <

1
2} ∆+

2 = {z ∈ C∞ : |z − 1
2 | <

1
2}

The transformations are
T1 : z 7→ z + 2 and T2 : z 7→ −1

z
.

This is then a Fuchsian group preserving the upper and lower half-planes. It is a subgroup of the
modular group we looked at earlier. Its limit set is the circle R ∪ {∞}.

∆
−

1 ∆
+

1

∆
−

2 ∆
+

2

-2 -1 0 1 2

∆
−

1 ∆
+

1

∆
−

2 ∆
+

2
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An even more degenerate case is when each disc touches the 3 others. This is illustrated below on
the left. The group is generated by two parabolic transformations fixing points where two circles touch.
The limit set is the Apollonian gasket. This is the pattern obtained as follows:

Given any 3 mutually tangent circles, there are 2 further circles each of which touches
each of the original 3. Start with 3 mutually tangent circles and use this process to add further
circles recursively.

Exercise:

33. Show that we can choose 4 circles each pair of which touch so that they have tetrahedral
symmetry. Show that the limit set, the Apollonian gasket also has tetrahedral symmetry.

Four circles with each pair tangent. Limit set — The Apollonian Gasket
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We ought really to draw this picture on the Riemann sphere, as illustrated below.

By allowing these sorts of degenration for Schottky groups we can create very complicated,
fractal limit sets. An example is given below.
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*24.2 Riemann Surfaces *

Let G be a group of Möbius transformations that acts discontinuously on the unit disc D.
Then the quotient D/G is an orientable surface. Each of the Möbius transformations in G is
analytic and has an analytic inverse. Hence we can do complex analysis on the quotient D/G.
We call such a surface which looks locally like a piece of the complex plane a Riemann surface.

Similar arguments apply to groups acting discontinuously on the complex plane. For
example, consider the group of translations G = {z 7→ z + λ : λ ∈ Λ}. When Λ = {0}, the
quotient C/G is just C; when Λ = Zω1, the quotient C/G = C/Zω1 is a cylinder; when G =
Zω1 + Zω2 (with ω1 and ω2 linearly independent over R), the quotient C/G = C/(Zω1 + Zω2)
is a torus.

The Riemann Mapping Theorem (and the Uniformization Theorem) states that every
Riemann surface is either the quotient of the unit disc D by a discrete group or else on of the
special surfaces: P, C, a cylinder or a torus. This means that almost all Riemann surfaces
are quotients of the unit disc. We can study them by studying the discrete groups of Möbius
transformations that maps the unit disc to itself, that is, by studying Fuchsian groups.

Compact Riemann surfaces are compact orientable surfaces. It can be shown that these
are homeomorphic to spheres with K handles for some K > 0. Hence every such compact
orientable surface is the quotient of the Riemann sphere by a Schottky group. Indeed, more is
true, by choosing the discs ∆±

k appropriately, we can obtain every compact Riemann surface
from a Schottky group, including the complex structure on the surface. This leads us to think
about classifying all compact Riemann surfaces by using the Schottky groups. This is a very
active area of research known as the study of Teichmüller space.

For further study I recommend the book Indra’s Pearls: The Vision of Felix Klein by
David Mumford, Caroline Series, and David Wright. Cambridge University Press, 2002 (ISBN
0-521-35253-3). This has much more information, beautifully presented.
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