3 3 THE RIEMANN SPHERE

3.1 Models for the Riemann Sphere.

One dimensional projective complex space P(C?) is the set of all one-dimensional subspaces of C2. If
z = (21,22) € C?\ 0 then we will denote by [z] = [2; : 22] the one-dimensional subspace

[21 : 22] = {(A\z1,A\22) € C?: A € C}
through z . The vector space C? has a standard inner product
(z, W) = Zrw) + Zaws

and associated norm ||z|| = /(|21]? + |22]?) . If z,w € C?\ 0 then z/||z|| is a point of unit norm in the
subspace [21 : 29| and its distance from the subspace [w; : ws] is

[(z, w)[?
[|2[[?[[wl[?

d([z], [w]) = 24 /1 -

This is a metric on P(C?) called the Study metric. With this metric P(C?) becomes a compact Hausdorff
space. The two maps

¢ :P(C*)\[1:0] — C; [ZlZZQ]Hz—;
$:P(C*)\[0:1] - C; [zlzzQ]Hj—j

are bijections and have ¢! : z +— 271 | so they are charts for a Riemann surface structure on P(C?) .

We will always assume that P(C?) is made into a Riemann surface in this way.

Exercises
1. Prove that the Study metric is indeed a metric.

2. Show that for T € GL(2,C) the map [z] — [T'z] is a continuous map from P(C?) to itself. When is
it an isometry?

3. If u, v is an orthogonal basis for C? prove that the map

0:P(C)\ [u]; [2] o $22)

is a chart for the Riemann surface P(C?). What are the transition maps for two such charts?

The map .
P(C?) — Co. - (2] — ¢(z) = S it [z] #[1:0]
[0 : 1] — 00

is a conformal map which we will use to identify P(C?) with Co, . The Study metric induces a metric
on C, called the chordal metric:

2|z — w| .
d = f
)= T epva ey - T evEC
2

V(2%
1

d(z,00) = d(00,2) =



We can also identify Co, with the unit sphere S? in R? by using stereographic projection from the
point P = (0,0,1). For z = x + iy € C the line through P and (z,y,0) cuts the sphere at P and at the

ot 5 — 2z 2y 1-]z?
point 2 = (1+\z\27 TH2 7 ) The map

C 52~{ P

oo +— P

is then a homeomorphism. This makes S? into a Riemann surface. Note that the inner product of
2,0 € S?is

(5,10) = 2(zw + 2w) + (1 — |22)(1 — |w|?) 1 2|z — w|?
’ 1+ 2%+ [w]?) (1+[2[*) A+ [w]?)
SO
2|z — w|

12 = ol = VIZI1? + [[@]* - 2(2, @) =

V(I 2PV [w]?)
Thus the chordal distance d(z,w) is equal to the length of the chord from 2 to w in R3 .
Each of the models P(C?), C, and S? has certain merits. The most elegant theory uses P(C?);

while S? is easy to visualize and C is often easy for calculations. We will switch from one to another
freely.

Exercises

4. [This assumes a little knowledge of algebraic geometry.] Let z € CV be a row vector. Then
z*z = Z'z is in the real vector space Her(N) of Hermitian matrices. What is the dimension of the
real projective space P(Her(N)) ? Show that

J:P(CY) = P(Her(N)) ; [2] — [z*2]
is a well defined, injective map and that its image is a projective variety (i.e. the set where a

collection of homogeneous polynomials vanish). When N = 2, the image is a conic in P(R*)
isomorphic to the sphere. [Thus J generalizes the identification of P(C?) with S2.]

ItT= (LCL Z) € GL(2,C) then T induces a map

P(T) : P(C?) — P(C?) ; [21 : 22] — [az1 + bzg : c21 + d2a).

It corresponds to the Mébius transformation Coo — Cy ; 2 — (az + b)/(cz + d). Therefore the map

GL(2,C) — Mobb ; (CCL Z) — {z»—> az—l—b}

cz+d

is a group homomorphism onto the group Méb of Mobius transformations. Its kernel is {AI : A € C*}
so Mob is isomorphic to the quotient GL(2,C)/C*I, which is called the projective general linear
group PGL(2,C). Similarly, M6b is isomorphic to the projective special linear group PSL(2,C) =
SL(2,C)/{-1I,+1}.



3.2 Rational Functions.

Let f: R — Cy be a meromorphic function on a Riemann surface R. A point z, € R is a pole of f if
f(25) = 00. By Proposition 2.2.1 these are isolated. If R is a domain in C then f will have a Laurent
series Y 7 v an(z — 2,)" which converges on a neighbourhood of z,. The coefficient N is equal to
deg f(z,) and is called the order of the pole. The sum Z;i_zv an(z — z,)™ is called the principal part of
f at z,. It is a polynomial in (z — 2,) "' and the difference between f and its principal part is an analytic
map into C on a neighbourhood of z,. Similarly, if R is a domain in C,, and oo is a pole of f then f
has a Laurent series Zzosz anz~ ™ convergent in a neighbourhood of co. The sum Z;ifzv apz" ™ 18
the principal part of f at oo. It is a polynomial in z.

A rational function r is the quotient a/b of two polynomials a and b which have no common zeros.
It is therefore a meromorphic function from C, to itself. If the polynomials a and b have degrees dega

and degb respectively, then r will have dega zeros in C (counting multiplicity) and a zero of order
degb — dega at co if degb > dega . Therefore r has degree max(dega, degb).

Theorem 3.2.1
A function f: C,, — C is meromorphic if, and only if, it is rational.
Proof:

It is clear that a rational function is meromorphic. Suppose that f is meromorphic. Then its poles

are isolated in the compact set C,, so there are only finitely many of them, say z1,2s,...,2x. Let pg
be the principal part of f at the pole z;. Then g = f — Y py is a meromorphic function and it has no
poles. By theorem 2.2.3 g must be constant. Hence f is rational. O
Exercises

5. A divisor on a compact Riemann surface is a function d : R — Z which is zero except at a finite
set of points. These form a commutative group D. The map

0:D—Z ; dHZ(d(z):zeR)
is a homomorphism. Let Dy be its kernel.

(a) Let f be a meromorphic function on R which is not identically zero, so f € M(R)*. Then
f has finitely many zeros and poles. Let (f) be the divisor which is deg f(z) at any zero
z, —deg f(z) at any pole z, and zero elsewhere. Show that this gives a homomorphism of
commutative groups

MR =Dy fre ()
Find the kernel of this homomorphism. The quotient D/{(f) : f € M(R)*} is called the
divisor class group of R.
(b) Show that the divisor class group of C, is trivial.

6. Find all the meromorphic 1-forms (differentials) on C,.




3.3 Mobbius Transformations

Theorem 3.3.1
Aut Co =Moéb .
Proof:

If f € AutC,, then f: C, — C is meromorphic and bijective. Hence Theorem 3.2.1 shows that
it is a rational function of degree 1. These are precisely the Mobius transformations z — (az +b)/(cz +
d) for ad —be #£ 0. O

If 20, 21, 200 are three distinct points of C,, then there is a unique Mobius transformation 7' which
maps them to 0, 1, co respectively. It is given by
Z— 20 21 — 20
2 —
Z— Zoo R1 — X0
The image of z € Co, under this transformation is called the cross ratio R(zo, 21, 200, 2). It is then clear
that the following result is true.

Proposition 3.3.2 Cross ratios

There is a Mébius transformation which maps the four distinct points zg, 21, Zso, 2 In C, onto the
distinct points wp, w1, Wee, w, in order, if and only if R(zy, 21, Zeo, 2) = R(wo, W1, Wee, W).

O

Let T : z — (az 4+ b)/(cz + d) be a Mdbius transformation with ad — bc = § # 0. Then T fixes a
point z € C if, and only if, az? + (d — a)z — b = 0, and fixes oo if, and only if, ¢ = 0. Thus T is either
the identity or it fixes exactly 1 or 2 points of C,.

Theorem 3.3.3
If 7 : Coo — R is a universal covering of the Riemann surface R, then 7 is conformal.
Proof:

Theorem 2.3.5 showed that R was the quotient of C,, by a subgroup G of AutC,,. Moreover
every element of G other than the identity has no fixed points. We have seen that there are no such
automorphismes. (I

Suppose that T has exactly two fixed points zy and zo,. Then we can find a Mobius transformation
S which maps zyp and 2z, to 0 and oo respectively. So T} = STS™! is a Mobius transformation which
fixes 0 and oo alone. Hence we must have T3 = STS™! : z — Az for some XA € C\ {0,1} . Now, if 73 and
Ty are conjugate in Mob, say Ty = UT U}, then U must map the fixed points of T; to the fixed points
of T}. Hence, z — Az and z + uz are conjugate if, and only if, x = A or A~1. It is easy to find the value

of XA from T'. For, if T : z — (az +b)/(cz + d) then the matrix M (T) = “ d

up to multiplication of each entry by a non-zero complex number. Hence 7(T) = (tr M (T))?/ det M (T)
does depend only on T'. Since the trace and determinant are invariant under conjugation we see that

b) is determined by T

(A+1)?

n(T) = 7(17) = S

=1(A+2"H+ 1

4



Thus 7(T) determines the pair (A\,A\~!) and this determines the conjugacy class of T in the group of
Mobius transformations. We give names to various different classes of transformations:
T is a Mobius transformation not equal to the identity.
T is elliptic < [Al=1but A#1 < 7(T)€]0,1)
T is hyperbolic < XeR\{-1,0,1} < 7(T) e (1,00)
T is lozodromic < A€ C\Rand [A|#1 <« 7(T)eC\]J0,00)
If T has exactly one fixed point z., then we can conjugate T' by a Mdbius transformation S which
sends zo, to oo . Then T} = ST S~ fixes only oo and so is z + z + v for v a non-zero complex number.

All such Mébius transformations T are conjugate to one another. In this case we say that T' is parabolic.
Note that 7(T) = 1 if, and only if, T is either parabolic or the identity.

Exercises

Let T : z+— (az +b)/(cz + d) be a Mobius transformation.

7. Consider the chordal metric on C., and show that 7" multiplies the length of an infinitesimally
short curve at z by the factor

[T"(2)[(A+121?) _ _lad —be|(1 + |2*)
L+|T(2)]2  |az+b2+|cz +d?

Show that the maximum and minimum values of this quantity are

s+vs2—1 and s—vs2—1

where
_ lal® + [0 + [ef* + |d|?
B 2|ad — be| '

[Hint: Think about C as P(C?). ]
8. Let Z(T) ={S € Méb: ST =T5} .
(a) Show that Z(T') is a subgroup of M&b.

(b) Find which groups (up to isomorphism)can arise as Z(T') for some Mobius transformation T

9. Let A be a 2 x 2 complex matrix with trace equal to 0. Show that the series

expA = i %A”

n=0

converges and prove the following properties.

(a) If AB= BA then exp(A+ B) =expAexpB .

(b) {exptA:t € R} is a commutative group under multiplication of matrices.

(¢) The function f(t) = det exp tA satisfies f/'(t) = f(¢t)tr A = 0. Hence exptA € SL(2,C) .

Let exptA now denote the Mobius transformation determined by the matrix exptA. Show that
every Mobius transformation is equal to exp A for some matrix A . Is the choice of A unique? For
z € C4 the images of z under the Mobius transformations exptA for ¢ € R trace out a curve.

Which curves can arise in this way? Sketch examples. (The groups {exptA : t € R} for some A
are the 1-parameter subgroups of the Lie group Mab.)
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