
3 3 THE RIEMANN SPHERE

3.1 Models for the Riemann Sphere.

One dimensional projective complex space P(C2) is the set of all one-dimensional subspaces of C2. If
z = (z1, z2) ∈ C2 \ 0 then we will denote by [z] = [z1 : z2] the one-dimensional subspace

[z1 : z2] = {(λz1, λz2) ∈ C2 : λ ∈ C}

through z . The vector space C2 has a standard inner product

〈z,w〉 = z1w1 + z2w2

and associated norm ||z|| =
√

(|z1|2 + |z2|2) . If z,w ∈ C2 \ 0 then z/||z|| is a point of unit norm in the
subspace [z1 : z2] and its distance from the subspace [w1 : w2] is

d([z], [w]) = 2

√
1− |〈z,w〉|2

||z||2||w||2
.

This is a metric on P(C2) called the Study metric. With this metric P(C2) becomes a compact Hausdorff
space. The two maps

φ : P(C2) \ [1 : 0] → C ; [z1 : z2] 7→
z1
z2

ψ : P(C2) \ [0 : 1] → C ; [z1 : z2] 7→
z2
z1

are bijections and have ψφ−1 : z 7→ z−1 , so they are charts for a Riemann surface structure on P(C2) .
We will always assume that P(C2) is made into a Riemann surface in this way.

Exercises
1. Prove that the Study metric is indeed a metric.
2. Show that for T ∈ GL(2,C) the map [z] 7→ [Tz] is a continuous map from P(C2) to itself. When is

it an isometry?
3. If u,v is an orthogonal basis for C2 prove that the map

θ : P(C2) \ [u] ; [z] 7→ 〈u, z〉
〈v, z〉

is a chart for the Riemann surface P(C2). What are the transition maps for two such charts?

The map

P(C2) → C∞ ;

 [z] 7→ φ(z) =
z1
z2

if [z] 6= [1 : 0]

[0 : 1] 7→ ∞

is a conformal map which we will use to identify P(C2) with C∞ . The Study metric induces a metric
on C∞ called the chordal metric:

d(z, w) =
2|z − w|√

(1 + |z|2)
√

(1 + |w|2)
, if z, w ∈ C

d(z,∞) = d(∞, z) =
2√

(1 + |z|2)
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We can also identify C∞ with the unit sphere S2 in R3 by using stereographic projection from the
point P = (0, 0, 1). For z = x+ iy ∈ C the line through P and (x, y, 0) cuts the sphere at P and at the
point ẑ =

(
2x

1+|z|2 ,
2y

1+|z|2 ,
1−|z|2
1+|z|2

)
. The map

C∞ → S2 ;

{
z 7→ ẑ

∞ 7→ P

is then a homeomorphism. This makes S2 into a Riemann surface. Note that the inner product of
ẑ, ŵ ∈ S2 is

〈ẑ, ŵ〉 =
2(zw + zw) + (1− |z|2)(1− |w|2)

(1 + |z|2)(1 + |w|2)
= 1− 2|z − w|2

(1 + |z|2)(1 + |w|2)
so

||ẑ − ŵ|| =
√

(||ẑ||2 + ||ŵ||2 − 2〈ẑ, ŵ〉) =
2|z − w|√

(1 + |z|2)
√

(1 + |w|2)
.

Thus the chordal distance d(z, w) is equal to the length of the chord from ẑ to ŵ in R3 .

Each of the models P(C2), C∞ and S2 has certain merits. The most elegant theory uses P(C2);
while S2 is easy to visualize and C∞ is often easy for calculations. We will switch from one to another
freely.

Exercises

4. [This assumes a little knowledge of algebraic geometry.] Let z ∈ CN be a row vector. Then
z∗z = ztz is in the real vector space Her(N) of Hermitian matrices. What is the dimension of the
real projective space P(Her(N)) ? Show that

J : P(CN ) → P(Her(N)) ; [z] 7→ [z∗z]

is a well defined, injective map and that its image is a projective variety (i.e. the set where a
collection of homogeneous polynomials vanish). When N = 2, the image is a conic in P(R4)
isomorphic to the sphere. [Thus J generalizes the identification of P(C2) with S2.]

If T =
(
a b
c d

)
∈ GL(2,C) then T induces a map

P(T ) : P(C2) → P(C2) ; [z1 : z2] 7→ [az1 + bz2 : cz1 + dz2].

It corresponds to the Möbius transformation C∞ → C∞ ; z 7→ (az + b)/(cz + d). Therefore the map

GL(2,C) → Möb ;
(
a b
c d

)
7→

{
z 7→ az + b

cz + d

}
is a group homomorphism onto the group Möb of Möbius transformations. Its kernel is {λI : λ ∈ C×}
so Möb is isomorphic to the quotient GL(2,C)/C×I, which is called the projective general linear
group PGL(2,C). Similarly, Möb is isomorphic to the projective special linear group PSL(2,C) =
SL(2,C)/{−I,+I}.

2



3.2 Rational Functions.

Let f : R → C∞ be a meromorphic function on a Riemann surface R. A point zo ∈ R is a pole of f if
f(zo) = ∞. By Proposition 2.2.1 these are isolated. If R is a domain in C then f will have a Laurent
series

∑∞
n=−N an(z − zo)n which converges on a neighbourhood of zo. The coefficient N is equal to

deg f(zo) and is called the order of the pole. The sum
∑−1

n=−N an(z− zo)n is called the principal part of
f at zo. It is a polynomial in (z−zo)−1 and the difference between f and its principal part is an analytic
map into C on a neighbourhood of zo. Similarly, if R is a domain in C∞ and ∞ is a pole of f then f
has a Laurent series

∑∞
n=−N anz

−n convergent in a neighbourhood of ∞. The sum
∑−1

n=−N anz
−n is

the principal part of f at ∞. It is a polynomial in z.

A rational function r is the quotient a/b of two polynomials a and b which have no common zeros.
It is therefore a meromorphic function from C∞ to itself. If the polynomials a and b have degrees deg a
and deg b respectively, then r will have deg a zeros in C (counting multiplicity) and a zero of order
deg b− deg a at ∞ if deg b > deg a . Therefore r has degree max(deg a,deg b).

Theorem 3.2.1

A function f : C∞ → C∞ is meromorphic if, and only if, it is rational.

Proof:

It is clear that a rational function is meromorphic. Suppose that f is meromorphic. Then its poles
are isolated in the compact set C∞, so there are only finitely many of them, say z1, z2, . . . , zK . Let pk

be the principal part of f at the pole zk. Then g = f −
∑
pk is a meromorphic function and it has no

poles. By theorem 2.2.3 g must be constant. Hence f is rational. �

Exercises

5. A divisor on a compact Riemann surface is a function d : R → Z which is zero except at a finite
set of points. These form a commutative group D. The map

δ : D → Z ; d 7→
∑

(d(z) : z ∈ R)

is a homomorphism. Let D0 be its kernel.
(a) Let f be a meromorphic function on R which is not identically zero, so f ∈ M(R)×. Then

f has finitely many zeros and poles. Let (f) be the divisor which is deg f(z) at any zero
z, −deg f(z) at any pole z, and zero elsewhere. Show that this gives a homomorphism of
commutative groups

M(R)× → D0 ; f 7→ (f).

Find the kernel of this homomorphism. The quotient D/{(f) : f ∈ M(R)×} is called the
divisor class group of R.

(b) Show that the divisor class group of C∞ is trivial.
6. Find all the meromorphic 1-forms (differentials) on C∞.
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3.3 Möbius Transformations

Theorem 3.3.1

Aut C∞ =Möb .

Proof:

If f ∈ Aut C∞ then f : C∞ → C∞ is meromorphic and bijective. Hence Theorem 3.2.1 shows that
it is a rational function of degree 1. These are precisely the Möbius transformations z 7→ (az+ b)/(cz+
d) for ad− bc 6= 0. �

If z0, z1, z∞ are three distinct points of C∞ then there is a unique Möbius transformation T which
maps them to 0, 1,∞ respectively. It is given by

z 7→ z − z0
z − z∞

z1 − z∞
z1 − z0

.

The image of z ∈ C∞ under this transformation is called the cross ratio R(z0, z1, z∞, z). It is then clear
that the following result is true.

Proposition 3.3.2 Cross ratios

There is a Möbius transformation which maps the four distinct points z0, z1, z∞, z in C∞ onto the
distinct points w0, w1, w∞, w, in order, if and only if R(z0, z1, z∞, z) = R(w0, w1, w∞, w).

�

Let T : z 7→ (az + b)/(cz + d) be a Möbius transformation with ad − bc = δ 6= 0. Then T fixes a
point z ∈ C if, and only if, az2 + (d− a)z − b = 0, and fixes ∞ if, and only if, c = 0. Thus T is either
the identity or it fixes exactly 1 or 2 points of C∞.

Theorem 3.3.3

If π : C∞ → R is a universal covering of the Riemann surface R, then π is conformal.

Proof:

Theorem 2.3.5 showed that R was the quotient of C∞ by a subgroup G of Aut C∞. Moreover
every element of G other than the identity has no fixed points. We have seen that there are no such
automorphisms. �

Suppose that T has exactly two fixed points z0 and z∞. Then we can find a Möbius transformation
S which maps z0 and z∞ to 0 and ∞ respectively. So T1 = STS−1 is a Möbius transformation which
fixes 0 and ∞ alone. Hence we must have T1 = STS−1 : z 7→ λz for some λ ∈ C\{0, 1} . Now, if T1 and
T2 are conjugate in Möb, say T2 = UT1U

−1, then U must map the fixed points of T2 to the fixed points
of T1. Hence, z 7→ λz and z 7→ µz are conjugate if, and only if, µ = λ or λ−1. It is easy to find the value

of λ from T . For, if T : z 7→ (az + b)/(cz + d) then the matrix M(T ) =
(
a b
c d

)
is determined by T

up to multiplication of each entry by a non-zero complex number. Hence τ(T ) = (trM(T ))2/detM(T )
does depend only on T . Since the trace and determinant are invariant under conjugation we see that

τ(T ) = τ(T1) =
(λ+ 1)2

4λ
= 1

4 (λ+ λ−1) + 1
2 .

4



Thus τ(T ) determines the pair (λ, λ−1) and this determines the conjugacy class of T in the group of
Möbius transformations. We give names to various different classes of transformations:

T is a Möbius transformation not equal to the identity.

T is elliptic ⇔ |λ| = 1 but λ 6= 1 ⇔ τ(T ) ∈ [0, 1)

T is hyperbolic ⇔ λ ∈ R \ {−1, 0, 1} ⇔ τ(T ) ∈ (1,∞)

T is loxodromic ⇔ λ ∈ C \ R and |λ| 6= 1 ⇔ τ(T ) ∈ C \ [0,∞)

If T has exactly one fixed point z∞ then we can conjugate T by a Möbius transformation S which
sends z∞ to ∞ . Then T1 = STS−1 fixes only ∞ and so is z 7→ z+ ν for ν a non-zero complex number.
All such Möbius transformations T1 are conjugate to one another. In this case we say that T is parabolic.
Note that τ(T ) = 1 if, and only if, T is either parabolic or the identity.

Exercises

Let T : z 7→ (az + b)/(cz + d) be a Möbius transformation.
7. Consider the chordal metric on C∞ and show that T multiplies the length of an infinitesimally

short curve at z by the factor

|T ′(z)|(1 + |z|2)
1 + |T (z)|2

=
|ad− bc|(1 + |z|2)
|az + b|2 + |cz + d|2

.

Show that the maximum and minimum values of this quantity are

s+
√
s2 − 1 and s−

√
s2 − 1

where

s =
|a|2 + |b|2 + |c|2 + |d|2

2|ad− bc|
.

[Hint: Think about C∞ as P(C2). ]
8. Let Z(T ) = {S ∈ Möb : ST = TS} .

(a) Show that Z(T ) is a subgroup of Möb.
(b) Find which groups (up to isomorphism)can arise as Z(T ) for some Möbius transformation T

.
9. Let A be a 2× 2 complex matrix with trace equal to 0. Show that the series

expA =
∞∑

n=0

1
n!
An

converges and prove the following properties.
(a) If AB = BA then exp(A+B) = expA expB .
(b) {exp tA : t ∈ R} is a commutative group under multiplication of matrices.
(c) The function f(t) = det exp tA satisfies f ′(t) = f(t) trA = 0. Hence exp tA ∈ SL(2,C) .
Let exp tA now denote the Möbius transformation determined by the matrix exp tA. Show that
every Möbius transformation is equal to expA for some matrix A . Is the choice of A unique? For
z ∈ C∞ the images of z under the Möbius transformations exp tA for t ∈ R trace out a curve.
Which curves can arise in this way? Sketch examples. (The groups {exp tA : t ∈ R} for some A
are the 1-parameter subgroups of the Lie group Möb.)
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