
6 6 DISCRETE GROUPS

6.1 Discontinuous Group Actions

Let G be a subgroup of Möb(D). This group acts discontinuously on D if, for every compact subset
K of D, the set {T ∈ G : T (K) ∩K 6= ∅} is finite.

Proposition 6.1.1

Let G be a subgroup of Möb(D) and zo ∈ D. Then G acts discontinuously on D if and only if

{T ∈ G : ρ(zo, T (zo)) 6 r}

is finite for every r < ∞.

Proof:

The closed disc C = {z ∈ D : ρ(zo, z) 6 r} is compact and

T (C) ∩ C 6= ∅ ⇔ there exists w ∈ D with ρ(zo, w) 6 r and ρ(T (zo), w) 6 r

⇔ ρ(zo, T (zo)) 6 2r

Suppose first that G acts discontinuously on D. Then the set {T ∈ G : C ∩ T (C) 6= ∅} is finite and
hence {T ∈ G : ρ(zo, T (zo)) 6 2r} is also finite.

Now suppose that {T ∈ G : ρ(zo, T (zo)) 6 r} is finite for every r < ∞. Any compact subset K of
D must lie within some closed ball C = {z ∈ D : ρ(zo, z) 6 r}. Then

{T ∈ G : K ∩ T (K) 6= ∅} ⊂ {T ∈ G : C ∩ T (C) 6= ∅} = {T ∈ G : ρ(zo, T (zo)) 6 2r} .

So G acts discontinuously on D. �

Proposition 6.1.2

Let G act discontinuously on D and let zo ∈ D. Then

The stabilizer Stab(zo) = {T ∈ G : T (zo) = zo} is a finite, cyclic subgroup of G.

The orbit G(zo) is a closed, discrete subset of D. So there is a δ > 0 with

ρ(zo, T (zo)) > 4δ for all T ∈ G \ Stab(zo) .

Proof:

The stabilizer Stab(zo) = {T ∈ G : {zo} ∩ T ({zo}) 6= ∅} is certainly finite and a subgroup of
{T ∈ Möb(D) : T (zo) = zo}. Hence it is conjugate to a finite subgroup of

{T ∈ Möb(D) : T (0) = 0} = {z 7→ ωz : |ω| = 1} .

Such a subgroup must be cyclic since it is generated by the rotation through the smallest positive angle.
Hence Stab(zo) is generated by an elliptic transformation of finite order that fixes zo.
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For w ∈ D we have
ρ(zo, T (zo)) 6 ρ(w, zo) + ρ(w, T (zo)) .

So Proposition 6.1.1 shows that ρ(w, T (zo)) 6 r for only a finite number of T ∈ G. Consequently, the
orbit G(w) is closed and discrete in D. �

For the remainder of this section G will be a subgroup of Möb(D) that acts discontinuously on D.
The quotient D/G is the set of all G-orbits in D and q : D → D/G is the quotient map, which sends a
point z to the orbit G(z). We wish to show that the quotient can be made into a Riemann surface in
such a way that the quotient map is holomorphic.

Example:

First consider the example where G is the cyclic group

{z 7→ e2πik/Nz : k = 0, 1, 2, . . . , N − 1}

of order N that fixes 0. The map
π : D → D ; z 7→ zN

is constant on each orbit and maps each orbit to a distinct point. Hence it induces a bijection

φ : D/G → D ; q(z) 7→ zN .

We could then make D/G into a Riemann surface by insisting that φ is conformal. The quotient map
will then be holomorphic since z 7→ zN is.

A very similar example is when G is the cyclic group of order N that fixes another point zo ∈ D.
We may conjugate by the Möbius transformation

z 7→ z − zo

1− zoz

to reduce this to the previous example. Hence we see that the quotient is identified with D by taking
the quotient mapping to be

q : D → D ; z 7→
(

z − zo

1− zoz

)N

.

The general case arises by using these examples to construct charts on D/G that make it into a
Riemann surface.

First we will define a metric ρ̃ on the quotient. For orbits pj = q(zj) set

ρ̃(p1, p2) = inf{ρ(w1, w2) : w1 ∈ p1, w2 ∈ p2}
= inf{ρ(T1(z1), T2(z2)) : T1, T2 ∈ G} .

It is simple to see that ρ̃ is non-negative, symmetric and satisfies the triangle inequality. Since each
T ∈ G ⊂ Möb(D) is an isometry for the hyperbolic metric ρ, we have

ρ̃(p1, p2) = inf{ρ(z1, T (z2)) : T ∈ G} .

Now Proposition 6.1.2 shows that the orbit G(z2) is closed, so we see that ρ̃(p1, p2) = 0 only when
p1 = p2. Hence, ρ̃ is a metric on the quotient D/G. It gives the quotient topology on D/G, which is
therefore Hausdorff.
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Lemma 6.1.3

Let G be a subgroup of Möb(D) that acts discontinuously on D and let zo ∈ D be fixed by only the
identity transformation in G. Then there is a δ = δzo

> 0 so the quotient map restricts to give an
isometry

q| : D(zo, δ) → D̃(q(zo), δ)

from the disc D(zo, δ) of radius δ about zo in D onto the disc D̃(q(zo), δ) of radius δ about q(zo) in D/G.

Proof:

Choose δ as in Proposition 6.1.2 so that ρ(zo, T (zo)) > 4δ for each T ∈ G \ {I}.

If p ∈ D̃(q(zo), δ), then ρ̃(q(zo), p) < δ. Hence, there is a z ∈ D(zo, δ) with q(z) = p. If z′ is any
other point of the orbit p, then z′ = T (z) for some T ∈ G \ {I}. Hence,

ρ(zo, z
′) > ρ(zo, T (zo))− ρ(T (zo), T (z)) = ρ(zo, T (zo))− ρ(zo, z) > 4δ − δ

and so z′ /∈ D(zo, δ). Therefore, the restriction

q| : D(zo, δ) → D̃(q(zo), δ)

is bijective.

Now suppose that z1, z2 ∈ D(zo, δ). For each T ∈ G \ {I} we have

ρ(z1, T (z2)) > ρ(zo, T (zo))− ρ(zo, z1)− ρ(T (zo), T (z2))
= ρ(z0, T (zo))− ρ(zo, z1)− ρ(zo, z2)
> 4δ − δ − δ = 2δ .

Hence,
ρ̃(q(z1), q(z2)) = inf{ρ(z1, T (z2)) : T ∈ G} = ρ(z1, z2)

and the restriction of q is an isometry. �

This lemma deals with the case where the stabilizer of a point zo is trivial. Otherwise, the stabilizer
of zo is a cyclic group of some order N ∈ N. Note that, when G acts properly discontinuously on D,
then N = 1 for every orbit. In this case the lemma shows that there is a neighbourhood of every point
p = q(zo) homeomorphic to a neighbourhood of zo in D. These neighbourhoods readily give us charts
that make the quotient D/G into a Riemann surface with q : D → D/G holomorphic.

Suppose that zo has a stabilizer in G of order N . The stabilizer is a cyclic group generated by an
elliptic transformation fixing zo. Proposition 6.1.2 gives a number δ = δ(po) > 0 such that the discs
D(w, δ) = {z ∈ D : ρ(w, z) < δ} for w ∈ po are either disjoint or identical. For T ∈ G we have

T (D(zo, δ)) = D(zo, δ) when T ∈ Stab(zo) ;
T (D(zo, δ)) ∩ D(zo, δ) = ∅ for T ∈ G \ Stab(zo) .

Set ∆ = ∆(po) = {p ∈ D/G : ρ̃(po, p) < δ}. Then the quotient map sends D(zo, δ) onto ∆. Each
value in ∆ is taken exactly N times in D(zo, δ) except for po, which is only taken at zo. The points
z, z′ ∈ D(zo, δ) have q(z) = q(z′) if and only if z′ = T (z) for some T ∈ Stab(zo).

The map

β : z 7→
(

z − zo

1− zoz

)N

3



maps the disc D(zo, δ) onto another disc D(0, δ′) (where δ′ is given by tanh 1
2δ′ = (tanh 1

2δ)N ). This
map also has the property that β(z) = β(z′) if and only if z′ = T (z) for some T ∈ Stab(zo). Therefore,
there is an unique map

φ : ∆ → D(0, δ′) with φ(q(z)) =
(

z − zo

1− zoz

)N

for each z ∈ D(zo, δ).

Take these maps β as charts for D/G. The transition maps are clearly Möbius transformations and
so we see that the quotient is a Riemann surface with the quotient map holomorphic.

Note that the critical points of the quotient map q : D → D/G are those that have non-trivial
stabilizers. These points are a discrete subset of D. So, in particular, the stabilizer is trivial for all but
a countable number of points in D.

6.2 Discrete Groups

Möbius transformations in Möb(D) are represented by 2×2 complex matrices. This set of matrices
has a natural Euclidean topology. Hence we can define a subgroup G of Möb(D) to be a discrete group
if it is a discrete subset of Möb(D).

Proposition 6.2.1

A subgroup G of Möb(D) is a discrete group if and only if the identity I is isolated in G.

Proof:

For each T ∈ G the left multiplication LT : G → G; A 7→ TA is a homeomorphism. Hence I is an
isolated point of G if and only if every T ∈ G is isolated, that is G is discrete. �

This proposition shows that a group G 6 Möb(D) is a discrete subgroup of Möb(D) if and only if
there is no sequence (Tn) of non-identity elements of G that converges to I.

The main aim of this section is to prove that discreteness and acting discontinuously on D are
equivalent.

Theorem 6.2.2

Let G be a subgroup of Möb(D). Then G acts discontinuously on D if and only if G is a discrete
subgroup of Möb(D).

Proof:

Suppose first that G is not a discrete subgroup of Möb(D). Then there is a sequence (Tn) of
non-identity elements of G with Tn → I as n → ∞. Choose any point zo ∈ D. Then Tn(zo) → zo as
n →∞. By Proposition 6.1.1 now shows that G can not act discontinuously on D. Thus, if G does act
discontinuously on D, then G must be a discrete subgroup of Möb(D).

For the converse, suppose that G is a discrete subgroup of Möb(D) but G does not act discontinu-
ously on D. By Proposition 6.1.1, there are infinitely many elements T ∈ G with

ρ(0, T (0)) 6 r for some r < ∞ .
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The disc {z ∈ D : ρ(0, z) 6 r} is compact, so there is a sequence of non-identity element (Tn) in G with

Tn(0) → wo as n →∞

and wo some point of D with ρ(0, wo) 6 r.

For each w ∈ D, let

Sw : z 7→ z − w

1− wz
.

This is a Möbius transformation and Sw → Swo
as w → wo. For each n ∈ N, set

Sn = STn(0) and Rn = Sn ◦ Tn .

Then, as n → ∞, we have Sn → Swo
. Each Rn is a Möbius transformation of D that fixes 0, so it lies

in the compact group of rotations

{z 7→ ωz : |ω| = 1} 6 Möb(D) .

Consequently, there is a subsequence (Rn′) that converges to some rotation Ro. Therefore,

Tn′ = S−1
n′ ◦Rn′ → S−1

wo
◦Ro as n →∞ .

This proves that G is a not a discrete subgroup of Möb(D). For, if G were discrete, then there would be
an ε > 0 with the Euclidean distance d(T, I) > ε for every T ∈ G \ {I}. This implies that d(T, T ′) > ε
for every pair of distinct elements T, T ′ ∈ G. Hence the sequence (Tn) from G can only converge when
it is ultimately constant. �

6.3 Dirichlet Domains

Let G be a discrete group acting on D. Then we have shown that the quotient D/G is a Riemann
surface. To identify it, it is often useful to find a fundamental domain for G. This is a subdomain
F of D such that no two points of F are in the same orbit and every orbit meets the closure F in a
finite number of points. Then, we can identify the quotient D/G with the space obtained from F by
identifying points on ∂F that lie in the same orbit. Dirichlet showed that we could always find such a
fundamental domain.

Let zo be a point D that has trivial stabilizer. The Dirichlet domain with centre zo is the set

D(zo) = {z ∈ D : ρ(z, zo) < ρ(z, T (zo)) for all T ∈ G \ {I}} .

Proposition 6.3.1 Dirichlet domains

For each point zo with trivial stabilizer the Dirichlet domain D(zo) with centre zo is a fundamental
domain for G.

Proof:

For any two distinct points zo, z1 ∈ D, the set

γ(z1) = {z ∈ D : ρ(z, zo) = ρ(z, z1)}

is the perpendicular bisector of the hyperbolic geodesic from zo to z1. Hence, it is itself a hyperbolic
geodesic. The set

H(z1) = {z ∈ D : ρ(z, zo) < ρ(z, z1)}
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is then the half-plane bounded by this geodesic that contains zo. Each such half-plane is open, so the
intersection

D(zo) =
⋂
{H(T (zo)) : T ∈ G \ {I}}

is an open set containing zo.

Note that the distance from zo to γ(z1) is 1
2ρ(zo, z1). The orbit G(zo) is a discrete subset of D, so

only finitely many points of this orbit can lie within a finite distance of any point w. This means that
only finitely many of the geodesics γ(T (zo)) meet any disc about zo with finite hyperbolic radius. It is
now simple to see that the closure of D(zo) is the intersection of the closed half-planes

H(z1) = {z ∈ D : ρ(z, zo) 6 ρ(z, z1)} .

This closure is bounded by arcs of the geodesics γ(T (zo)).

Consider a point w ∈ D. The orbit G(zo) is discrete, so only finitely many points of the orbit
lie within any fixed hyperbolic distance of w. Consequently, there is a point T (zo) in this orbit with
ρ(w, T (zo)) minimal. This means that T−1(w) lies in D(zo).

Suppose another point in the orbit of w also lay in D(zo), say S−1(w). Then

ρ(zo, S
−1(w)) 6 ρ(S−1T (zo), S−1(w)) = ρ(zo, T

−1(w))

and so we must have equality with

ρ(zo, S
−1(w)) = ρ(S−1T (zo), S−1(w)) = ρ(zo, T

−1(w)) .

Since S−1T 6= I, we see that S−1(w) lies on the boundary of the Dirichlet domain D(zo). This shows
that no two points of the open Dirichlet domain can lie in the same orbit.

It also shows that, if S−1(w) and T−1(w) both lie in the closure of the Dirichlet domain, then
they are at the same distance from zo. Only a finite number of points in the orbit G(w) can lie at this
distance from zo. So the orbit G(w) meets D(zo) in finitely many points. �
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